
A	Beginner's	Guide	to	the	ESP8266
Pieter	P, 08-03-2017

Some	time	ago,	I	wrote	a	Beginner's	Guide	to	Arduino	that	seems	to	be	very	popular,	so	I	decided	to	create	a	follow-up:	A	Beginner's
Guide	to	the	ESP8266.	That's	right,	a	tutorial	on	how	to	use	the	world's	most	popular	$3	Wi-Fi	board.

This	is	going	to	be	a	very	in-depth	tutorial,	covering	some	networking	concepts	as	well.	If	you're	a	beginner,	and	just	want	to	go
straight	to	the	more	exciting	Wi-Fi	part,	feel	free	to	do	so,	I	included	short	TL;DR's	in	the	longer,	more	technical	parts.

A	short	overview	of	what	I'll	cover	in	this	article:	

1.	 What	is	an	ESP8266?	A	short	overview	of	what	an	ESP8266	is,	and	what	you	can	do	with	it
2.	 Deciding	on	what	board	to	buy:	There's	loads	of	different	ESP8266	available	these	days,	finding	the	one	that's	best	for	you

can	be	hard
3.	 Installing	the	software:	you	need	to	install	some	software	to	program	the	ESP8266,	and	maybe	a	USB	driver
4.	 Setting	up	the	hardware:	some	modules	and	boards	need	some	external	components
5.	 The	ESP8266	as	a	microcontroller:	the	ESP8266	can	be	used	as	a	normal	microcontroller,	just	like	an	Arduino
6.	 Network	protocols:	Before	we	start	using	the	Wi-Fi	capabilities	of	the	ESP8266,	I'll	teach	you	some	of	the	network	protocols

involved
7.	 Setting	up	a	Wi-Fi	connection:	That's	probably	why	you're	reading	this,	right?
8.	 Name	resolution:	Find	the	ESP8266	on	your	local	network	using	mDNS
9.	 Setting	up	a	simple	web	server:	This	enables	you	to	add	web	pages	to	the	ESP8266,	and	browse	them	from	your	computer	or

phone
10.	 Setting	up	an	advanced	web	server:	a	more	advanced	server	with	a	real	file	system	that	allows	you	to	upload	new	files	over

Wi-Fi
11.	 OTA	-	uploading	programs	over	Wi-Fi:	You	don't	have	to	upload	programs	over	USB,	you	can	use	Wi-Fi	instead
12.	 Wirelessly	controlling	your	RGB	lighting:	Change	the	color	of	your	LED	strips	using	your	phone	or	computer
13.	 Getting	the	time:	Connect	to	a	time	server	using	NTP	and	sync	the	ESP's	clock
14.	 Monitoring	sensors:	log	the	temperature	in	your	living	room,	save	it	in	flash	memory	and	show	it	in	a	fancy	graph	in	your

browser
15.	 Getting	email	notifications:	Turn	on	a	notification	light	when	you've	got	unread	emails
16.	 Advanced	features:	use	DNS,	captive	portals,	Wi-Fi	connector	libraries,	OSC	...

This	guide	expects	some	basic	knowledge	of	microcontrollers	like	the	Arduino.	If	that's	something	you're	not	already	familiar	with,	I'd
recommend	you	to	read	my	Beginner's	Guide	to	Arduino	first,	it	covers	a	lot	of	the	basics	that	I	won't	go	into	in	this	article.
I	really	want	to	focus	on	the	ESP8266-specific	things,	like	Wi-Fi	and	other	network	protocols,	the	ESP's	hardware,	software,	IoT,	etc	...

What	is	an	ESP8266?
The	ESP8266	is	a	System	on	a	Chip	(SoC),	manufactured	by	the	Chinese	company	Espressif.	It	consists	of	a	Tensilica	L106	32-bit
micro	controller	unit	(MCU)	and	a	Wi-Fi	transceiver.	It	has	11	GPIO	pins*	(General	Purpose	Input/Output	pins),	and	an	analog
input	as	well.	This	means	that	you	can	program	it	like	any	normal	Arduino	or	other	microcontroller.	And	on	top	of	that,	you	get	Wi-Fi
communication,	so	you	can	use	it	to	connect	to	your	Wi-Fi	network,	connect	to	the	Internet,	host	a	web	server	with	real	web	pages,	let
your	smartphone	connect	to	it,	etc	...	The	possibilities	are	endless!	It's	no	wonder	that	this	chip	has	become	the	most	popular	IOT
device	available.	

There	are	many	different	modules	available,	standalone	modules	like	the	ESP-##	series	by	AI	Thinker,	or	complete	development
boards	like	the	NodeMCU	DevKit	or	the	WeMos	D1.	Different	boards	may	have	different	pins	broken	out,	have	different	Wi-Fi	antennas,
or	a	different	amount	of	flash	memory	on	board.

(*)	The	ESP8266	chip	itself	has	17	GPIO	pins,	but	6	of	these	pins	(6-11)	are	used	for	communication	with	the	on-board	flash	memory	chip.

Programming

There	are	different	ways	to	program	the	ESP8266,	but	I'll	only	cover	the	method	using	the	Arduino	IDE.	This	is	really	easy	for
beginners,	and	it's	a	very	familiar	environment	if	you've	used	Arduino	boards	before.	
Just	keep	in	mind	that	it's	not	limited	to	this	option:	there's	also	an	official	SDK	available	to	program	it	in	real	C,	this	is	very	useful	if
you	want	to	optimize	your	code	or	do	some	advanced	tricks	that	aren't	supported	by	the	Arduino	IDE.	Another	possibility	is	to	flash	it
with	a	LUA	interpreter,	so	you	can	upload	and	run	LUA	scripts.	Or	maybe	you're	more	familiar	with	Python?	Then	you	should	check	out
the	MicroPython	firmware	to	interpret	MicroPython	scripts.	I'm	sure	there's	other	languages	available	as	well,	so	just	do	a	quick	Google
search	and	write	your	code	in	the	language	of	your	choice.

Requirements
You'll	need	a	couple	of	things	in	order	to	follow	this	guide:

An	ESP8266	board
A	computer	that	can	run	the	Arduino	IDE	(Windows,	Mac	or	Linux)
A	USB-to-Serial	converter,	it	is	very	important	that	you	use	a	3.3V	model*
A	USB	cable
A	3.3V	power	supply	or	voltage	regulator*
A	Wi-Fi	network	to	connect	to

(*)	Your	board	may	already	include	these.	More	information	can	be	found	in	the	next	chapter.

Hardware
Deciding	on	what	board	to	buy

ESP8266	is	just	the	name	of	the	chip,	many	companies	have	designed	their	own	boards	that	use	this	chip,	so	there	are	many	different
ESP8266	boards	on	the	market.	If	you	don't	know	the	difference	between	all	these	different	models,	you	might	have	a	hard	time
deciding	on	what	board	to	buy.

The	easiest	(and	fastest)	way	to	get	an	ESP8266	board	is	to	buy	one	from	a	well-known	electronics	shop	like	Adafruit	or	SparkFun,	but
if	you	want	it	cheap,	you	should	check	out	Ebay	or	other	sites	where	you	can	order	them	directly	from	China.

Development	boards

Some	boards	have	all	kinds	of	features	on-board	to	help	developing	ESP8266	hardware	and	software:	for	example,	a	USB	to	Serial
converter	for	programming,	a	3.3V	regulator	for	power,	on-board	LEDs	for	debugging,	a	voltage	divider	to	scale	the	analog	input	...
If	you're	a	beginner,	I	would	definitely	recommend	a	development	board.	It's	easier	to	get	started	if	you	don't	have	to	worry	about	all
these	things.

Bare-bones	AI	Thinker	boards

If	you	want	to	add	an	ESP8266	to	a	small	project,	or	if	you	want	a	cheaper*	board,	you	might	want	to	buy	a	board	that	doesn't	have
these	features.	In	that	case,	you	can	buy	one	of	the	many	ESP-##	modules	developed	by	AI	Thinker.	They	contain	just	the	ESP8266
and	the	necessary	components	to	run	it.	
To	program	the	board,	you'll	need	an	external	USB-to-Serial	converter.
With	some	modules,	you	get	an	on-board	antenna	(PCB	or	ceramic)	and	an	LED,	some	boards	have	just	an	antenna	connector,	or	no
LEDs	at	all.	They	also	differ	in	physical	size,	and	flash	memory	size.	An	important	thing	to	notice,	is	that	some	boards	do	not	break
out	all	GPIO	pins.	For	example,	the	ESP-01	only	has	2	I/O	pins	available	(apart	from	the	TX	and	RX	pins),	while	other	modules	like	the
ESP-07	or	ESP-12	break	out	all	available	I/O	pins.

(*)	The	board	itself	is	cheaper,	but	you'll	have	to	spend	more	on	external	parts.

Overview

Here's	a	table	with	some	of	the	most	popular	ESP8266	development	boards	and	their	features:

Board GPIO 3.3V
Vreg

USB-to-
Serial

Auto-
Reset

Auto-
Program Flash ADC

range Extra

SparkFun	ESP8266	Thing 11 + - + ±* 512KB	(4Mb) 0-1V Battery	charger,	crypto	element,
temperature	sensor,	light	sensor

SparkFun	ESP8266	Thing
-	Dev	Board 11 + + + + 512KB	(4Mb) 0-1V

Node	MCU 11 + + + + 4MB	(32Mb) 0-3.3V

Adafruit	Feather	HUZZAH
with	ESP8266 11 + + + + 4MB	(32Mb) 0-1V Battery	charger

Adafruit	HUZZAH
ESP8266	Breakout 11 + - - - 4MB	(32Mb) 0-1V 5V-tolerant	RX	and	Reset	pins

ESP-## 4	-
11 - - - - 512KB	(4Mb)	–

4MB	(32Mb) 0-1V Small	and	cheap

You	can	find	the	full	list	of	ESP-##	modules	here.

As	you	can	see,	both	the	Node	MCU	and	the	Adafruit	Feather	HUZZAH	are	solid	choices.

(*)	When	auto-program	on	the	SparkFun	ESP8266	Thing	is	enabled,	you	can't	use	the	Serial	Monitor.

Getting	the	hardware	ready

There	are	two	main	categories	of	ESP8266	boards:	development	boards	with	a	USB	interface	(USB-to-Serial	convertor)	on-board,	and
boards	without	a	USB	connection.

Development	boards	with	a	USB	interface

For	example:	NodeMCU,	SparkFun	ESP8266	Thing	-	Dev	Board,	SparkFun	Blynk	Board,	Adafruit	Feather	HUZZAH	with	ESP8266	Wi-Fi	...

These	boards	will	show	up	in	Device	manager	(Windows)	or	in	lsusb	(Linux)	as	soon	as	you	plug	them	in.
They	have	a	3.3V	regulator	on-board,	and	can	be	programmed	over	USB	directly,	so	you	don't	need	any	external	components	to	get	it
working.
The	only	thing	you	may	need	to	do,	is	solder	on	some	headers.

Bare-bones	boards	and	boards	without	a	USB	interface

This	category	has	2	sub-categories:	boards	with	a	3.3V	regulator	on-board,	and	boards	with	just	the	ESP8266	and	a	flash	memory
chip,	without	3.3V	regulator.	If	your	board	doesn't	have	a	5V	to	3.3V	regulator,	buy	one	separately.	You	could	use	an	LM1117-3.3	for
example.	The	on-board	3.3V	regulator	of	most	Arduino	boards	is	not	powerful	enough	to	power	the	ESP.

To	program	the	board,	you'll	need	a	USB-to-Serial	converter.	The	FTDI	FT232RL	is	quite	popular,	because	it	can	switch	between	5V	and
3.3V.	It	is	essential	that	the	USB-to-Serial	converter	you	buy	operates	at	3.3V.	If	you	buy	a	5V	model,	you	will	damage
the	ESP8266.

Connecting	the	USB-to-Serial	converter

1.	 Connect	the	ground	(GND)	of	the	USB-to-Serial	converter	to	the	ground	of	the	ESP8266.
2.	 Connect	the	RX-pin	of	the	USB-to-Serial	converter	to	the	TXD	pin	of	the	ESP8266.	(On	some	boards,	it's	labelled	TX	instead	of

TXD,	but	it's	the	same	pin.)
3.	 Connect	the	TX-pin	of	the	USB-to-Serial	converter	to	the	RXD	pin	of	the	ESP8266.	(On	some	boards,	it's	labelled	RX	instead	of

RXD,	but	it's	the	same	pin.)
4.	 If	your	ESP8266	board	has	a	DTR	pin,	connect	it	to	the	DTR	pin	of	the	USB-to-Serial	converter.	This	enables	auto-reset	when

uploading	a	sketch,	more	on	that	later.	

Enabling	the	chip

If	you're	using	a	bare-bone	ESP-##	board	by	AI	Thinker,	you	have	to	add	some	resistors	to	turn	on	the	ESP8266,	and	to	select	the	right
boot	mode.	

1.	 Enable	the	chip	by	connecting	the	CH_PD	(Chip	Power	Down,	sometimes	labeled	CH_EN	or	chip	enable)	pin	to	VCC	through	a	10KΩ
resistor.

2.	 Disable	SD-card	boot	by	connecting	GPIO15	to	ground	through	a	10KΩ	resistor.
3.	 Select	normal	boot	mode	by	connecting	GPIO0	to	VCC	through	a	10KΩ	resistor.
4.	 Prevent	random	resets	by	connecting	the	RST	(reset)	pin	to	VCC	through	a	10KΩ	resistor.
5.	 Make	sure	you	don't	have	anything	connected	to	GPIO2	(more	information	in	the	next	chapter).

Adding	reset	and	program	buttons

If	your	ESP8266	board	doesn't	have	a	reset	button,	you	could	add	one	by	connecting	a	push	button	to	between	the	RST	pin	and
ground.

To	put	the	chip	into	programming	mode,	you	have	to	pull	GPIO0	low	during	startup.	That's	why	we	also	need	a	program	button.
Because	it's	possible	to	use	GPIO0	as	an	output,	we	can't	directly	short	it	to	ground,	that	could	damage	the	chip.	To	prevent	this,
connect	470Ω	resistor	in	series	with	the	switch.	It's	important	that	this	resistance	is	low	enough,	otherwise,	it	will	be	pulled	high	by	the
10KΩ	resistor	we	added	in	the	previous	paragraph.

Connecting	the	power	supply

If	the	ESP8266	module	you	have	doesn't	have	a	3.3V	voltage	regulator	on	board,	you	have	to	add	one	externally.	You	could	use	an
LM1117-3.3	for	example.

1.	 Connect	the	first	pin	of	the	regulator	to	ground.
2.	 Place	a	10µF	capacitor	between	pin	2	(Vout)	and	ground.	Watch	the	polarity!
3.	 Place	a	10µF	capacitor	between	pin	3	(Vin)	and	ground.
4.	 Connect	pin	2	to	the	3.3V	or	VCCof	the	ESP8266.
5.	 Connect	pin	3	to	a	5V	power	source,	a	USB	port,	for	example.

Before	you	begin	...
There's	a	few	things	you	have	to	look	out	for	when	using	an	ESP8266:	The	most	important	thing	is	that	it	runs	at	3.3V,	so	if	you
connect	it	to	a	5V	power	supply,	you'll	kill	it.	Unlike	some	3.3V	Arduino	or	Teensy	boards,	the	ESP8266's	I/O	pins	are	not	5V
tolerant,	so	if	you	use	a	5V	USB-to-Serial	converter,	or	5V	sensors	etc.	you'll	blow	it	up.	
A	second	thing	to	keep	in	mind	is	that	the	ESP8266	can	only	source	or	sink	12mA	per	output	pin,	compared	to	20-40mA	for	most
Arduinos.
The	ESP8266	has	one	analog	to	digital	converter,	but	it	has	a	strange	voltage	range:	0	-	1V,	voltages	above	1V	might	damage	the
board.

One	last	thing	to	keep	in	mind	is	that	the	ESP8266	has	to	share	the	system	resources	and	CPU	time	between	your	sketch	and	the	Wi-Fi
driver.	Also,	features	like	PWM,	interrupts	or	I²C	are	emulated	in	software,	most	Arduinos	on	the	other	hand,	have	dedicated	hardware
parts	for	these	tasks.
For	most	applications	however,	this	is	not	too	much	of	an	issue.

Software
Installation	of	the	required	software

The	first	step	is	to	download	and	install	the	Arduino	IDE.	I	explained	this	in	A	Beginner's	Guide	to	Arduino.	(As	of	February	7th	2017,
the	latest	stable	version	of	the	IDE	is	1.8.1.)

To	program	the	ESP8266,	you'll	need	a	plugin	for	the	Arduino	IDE,	it	can	be	downloaded	from	GitHub	manually,	but	it	is	easier	to	just
add	the	URL	in	the	Arduino	IDE:

1.	 Open	the	Arduino	IDE.
2.	 Go	to	File	>	Preferences.
3.	 Paste	the	URL	http://arduino.esp8266.com/stable/package_esp8266com_index.json	into	the	Additional	Board	Manager	URLs	field.

(You	can	add	multiple	URLs,	separating	them	with	commas.)
4.	 Go	to	Tools	>	Board	>	Board	Manager	and	search	for	'esp8266'.	Select	the	newest	version,	and	click	install.	(As	of	February	7th

2017,	the	latest	stable	version	is	2.3.0.)

You	can	check	out	the	official	install	guide	here.

Drivers

If	you	are	using	a	board	with	the	CH340(G)	USB-to-Serial	chip,	like	the	NodeMCU,	you'll	probably	have	to	install	the	USB	drivers	for	it.
They	can	be	found	on	GitHub.	
If	you	are	using	a	board	with	the	CP2104	USB-to-Serial	chip,	like	the	Adafruit	Feather	HUZZAH	board,	you'll	probably	have	to	install
USB	drivers	as	well.	You	can	find	them	on	the	Silicon	Labs	website.
Boards	with	an	FTDI	chip	should	work	right	out	of	the	box,	without	the	need	of	installing	any	drivers.

Python

If	you	want	to	use	Over	The	Air	updates	on	Windows,	you	have	to	install	Python	2.7.	You	can	download	it	from	python.org.	During	the
installation,	you	have	to	select	the	option	to	add	Python	to	your	path.	If	you	don't	do	this,	the	Arduino	IDE	won't	be	able	to	find	the
Python	executable.

Examples

You	can	find	all	examples	used	in	this	article	on	my	GitHub.	Just	download	it	as	a	.ZIP	file,	unzip	it	to	a	convenient	location,	and	you're
good	to	go!

The	ESP8266	as	a	microcontroller	-	Hardware
While	the	ESP8266	is	often	used	as	a	‘dumb’	Serial-to-WiFi	bridge,	it’s	a	very	powerful	microcontroller	on	its	own.	In	this	chapter,	we’ll
look	at	the	non-Wi-Fi	specific	functions	of	the	ESP8266.

Digital	I/O
Just	like	a	normal	Arduino,	the	ESP8266	has	digital	input/output	pins	(I/O	or	GPIO,	General	Purpose	Input/Output	pins).	As	the	name
implies,	they	can	be	used	as	digital	inputs	to	read	a	digital	voltage,	or	as	digital	outputs	to	output	either	0V	(sink	current)	or	3.3V
(source	current).

Voltage	and	current	restrictions

The	ESP8266	is	a	3.3V	microcontroller,	so	its	I/O	operates	at	3.3V	as	well.	The	pins	are	not	5V	tolerant,	applying	more	than	3.6V
on	any	pin	will	kill	the	chip.

The	maximum	current	that	can	be	drawn	from	a	single	GPIO	pin	is	12mA.

Usable	pins

The	ESP8266	has	17	GPIO	pins	(0-16),	however,	you	can	only	use	11	of	them,	because	6	pins	(GPIO	6	-	11)	are	used	to	connect	the
flash	memory	chip.	This	is	the	small	8-legged	chip	right	next	to	the	ESP8266.	If	you	try	to	use	one	of	these	pins,	you	might	crash	your
program.

GPIO	1	and	3	are	used	as	TX	and	RX	of	the	hardware	Serial	port	(UART),	so	in	most	cases,	you	can’t	use	them	as	normal	I/O	while
sending/receiving	serial	data.

Boot	modes

As	mentioned	in	the	previous	chapter,	some	I/O	pins	have	a	special	function	during	boot:	They	select	1	of	3	boot	modes:

GPIO15 GPIO0 GPIO2 Mode
0V 0V 3.3V Uart	Bootloader
0V 3.3V 3.3V Boot	sketch	(SPI	flash)
3.3V x x SDIO	mode	(not	used	for	Arduino)

Note:	you	don’t	have	to	add	an	external	pull-up	resistor	to	GPIO2,	the	internal	one	is	enabled	at	boot.

We	made	sure	that	these	conditions	are	met	by	adding	external	resistors	in	the	previous	chapter,	or	the	board	manufacturer	of	your
board	added	them	for	you.	This	has	some	implications,	however:

GPIO15	is	always	pulled	low,	so	you	can’t	use	the	internal	pull-up	resistor.	You	have	to	keep	this	in	mind	when	using	GPIO15	as	an
input	to	read	a	switch	or	connect	it	to	a	device	with	an	open-collector	(or	open-drain)	output,	like	I²C.
GPIO0	is	pulled	high	during	normal	operation,	so	you	can’t	use	it	as	a	Hi-Z	input.
GPIO2	can’t	be	low	at	boot,	so	you	can’t	connect	a	switch	to	it.

Internal	pull-up/-down	resistors

GPIO	0-15	all	have	a	built-in	pull-up	resistor,	just	like	in	an	Arduino.	GPIO16	has	a	built-in	pull-down	resistor.

PWM

Unlike	most	Atmel	chips	(Arduino),	the	ESP8266	doesn’t	support	hardware	PWM,	however,	software	PWM	is	supported	on	all	digital
pins.	The	default	PWM	range	is	10-bits	@	1kHz,	but	this	can	be	changed	(up	to	>14-bit@1kHz).

Analog	input
The	ESP8266	has	a	single	analog	input,	with	an	input	range	of	0	-	1.0V.	If	you	supply	3.3V,	for	example,	you	will	damage	the	chip.
Some	boards	like	the	NodeMCU	have	an	on-board	resistive	voltage	divider,	to	get	an	easier	0	-	3.3V	range.	You	could	also	just	use	a
trimpot	as	a	voltage	divider.

The	ADC	(analog	to	digital	converter)	has	a	resolution	of	10	bits.

Communication

Serial

The	ESP8266	has	two	hardware	UARTS	(Serial	ports):
UART0	on	pins	1	and	3	(TX0	and	RX0	resp.),	and	UART1	on	pins	2	and	8	(TX1	and	RX1	resp.),	however,	GPIO8	is	used	to	connect	the
flash	chip.	This	means	that	UART1	can	only	transmit	data.

UART0	also	has	hardware	flow	control	on	pins	15	and	13	(RTS0	and	CTS0	resp.).	These	two	pins	can	also	be	used	as	alternative	TX0
and	RX0	pins.

I²C

The	ESP	doesn’t	have	a	hardware	TWI	(Two	Wire	Interface),	but	it	is	implemented	in	software.	This	means	that	you	can	use	pretty
much	any	two	digital	pins.	By	default,	the	I²C	library	uses	pin	4	as	SDA	and	pin	5	as	SCL.	(The	data	sheet	specifies	GPIO2	as	SDA	and
GPIO14	as	SCL.)	The	maximum	speed	is	approximately	450kHz.

SPI

The	ESP8266	has	one	SPI	connection	available	to	the	user,	referred	to	as	HSPI.	It	uses	GPIO14	as	CLK,	12	as	MISO,	13	as	MOSI	and	15
as	Slave	Select	(SS).	It	can	be	used	in	both	Slave	and	Master	mode	(in	software).

GPIO	overview

GPIO Function State Restrictions
0 Boot	mode	select 3.3V No	Hi-Z
1 TX0 - Not	usable	during	Serial	transmission

2 Boot	mode	select
TX1 3.3V	(boot	only) Don’t	connect	to	ground	at	boot	time	

Sends	debug	data	at	boot	time
3 RX0 - Not	usable	during	Serial	transmission
4 SDA	(I²C) - -
5 SCL	(I²C) - -
6	-	11 Flash	connection x Not	usable,	and	not	broken	out
12 MISO	(SPI) - -
13 MOSI	(SPI) - -
14 SCK	(SPI) - -
15 SS	(SPI) 0V Pull-up	resistor	not	usable

16 Wake	up	from	sleep - No	pull-up	resistor,	but	pull-down	instead	
Should	be	connected	to	RST	to	wake	up

The	ESP8266	as	a	microcontroller	-	Software
Most	of	the	microcontroller	functionality	of	the	ESP	uses	exactly	the	same	syntax	as	a	normal	Arduino,	making	it	really	easy	to	get
started.

Digital	I/O

Just	like	with	a	regular	Arduino,	you	can	set	the	function	of	a	pin	using	pinMode(pin,	mode);	where	pin	is	the	GPIO	number*,	and	mode	can
be	either	INPUT,	which	is	the	default,	OUTPUT,	or	INPUT_PULLUP	to	enable	the	built-in	pull-up	resistors	for	GPIO	0-15.	To	enable	the	pull-
down	resistor	for	GPIO16,	you	have	to	use	INPUT_PULLDOWN_16.

(*)	NodeMCU	uses	a	different	pin	mapping,	read	more	here.	To	address	a	NodeMCU	pin,	e.g.	pin	5,	use	D5:	for	instance:	pinMode(D5,
OUTPUT);

To	set	an	output	pin	high	(3.3V)	or	low	(0V),	use	digitalWrite(pin,	value);	where	pin	is	the	digital	pin,	and	value	either	1	or	0	(or	HIGH
and	LOW).

To	read	an	input,	use	digitalRead(pin);

To	enable	PWM	on	a	certain	pin,	use	analogWrite(pin,	value);	where	pin	is	the	digital	pin,	and	value	a	number	between	0	and	1023.

You	can	change	the	range	(bit	depth)	of	the	PWM	output	by	using	analogWriteRange(new_range);

The	frequency	can	be	changed	by	using	analogWriteFreq(new_frequency);.	new_frequency	should	be	between	100	and	1000Hz.

Analog	input

Just	like	on	an	Arduino,	you	can	use	analogRead(A0)	to	get	the	analog	voltage	on	the	analog	input.	(0	=	0V,	1023	=	1.0V).

The	ESP	can	also	use	the	ADC	to	measure	the	supply	voltage	(VCC).	To	do	this,	include	ADC_MODE(ADC_VCC);	at	the	top	of	your	sketch,	and
use	ESP.getVcc();	to	actually	get	the	voltage.
If	you	use	it	to	read	the	supply	voltage,	you	can’t	connect	anything	else	to	the	analog	pin.

Communication

Serial	communication

To	use	UART0	(TX	=	GPIO1,	RX	=	GPIO3),	you	can	use	the	Serial	object,	just	like	on	an	Arduino:	Serial.begin(baud).

To	use	the	alternative	pins	(TX	=	GPIO15,	RX	=	GPIO13),	use	Serial.swap()	after	Serial.begin.

To	use	UART1	(TX	=	GPIO2),	use	the	Serial1	object.

All	Arduino	Stream	functions,	like	read,	write,	print,	println,	...	are	supported	as	well.

I²C	and	SPI

You	can	just	use	the	default	Arduino	library	syntax,	like	you	normally	would.

Sharing	CPU	time	with	the	RF	part
One	thing	to	keep	in	mind	while	writing	programs	for	the	ESP8266	is	that	your	sketch	has	to	share	resources	(CPU	time	and	memory)
with	the	Wi-Fi-	and	TCP-stacks	(the	software	that	runs	in	the	background	and	handles	all	Wi-Fi	and	IP	connections).	
If	your	code	takes	too	long	to	execute,	and	don’t	let	the	TCP	stacks	do	their	thing,	it	might	crash,	or	you	could	lose	data.	It’s	best	to
keep	the	execution	time	of	you	loop	under	a	couple	of	hundreds	of	milliseconds.

Every	time	the	main	loop	is	repeated,	your	sketch	yields	to	the	Wi-Fi	and	TCP	to	handle	all	Wi-Fi	and	TCP	requests.

If	your	loop	takes	longer	than	this,	you	will	have	to	explicitly	give	CPU	time	to	the	Wi-Fi/TCP	stacks,	by	using	including	delay(0);	or
yield();.	If	you	don’t,	network	communication	won’t	work	as	expected,	and	if	it’s	longer	than	3	seconds,	the	soft	WDT	(Watch	Dog
Timer)	will	reset	the	ESP.	If	the	soft	WDT	is	disabled,	after	a	little	over	8	seconds,	the	hardware	WDT	will	reset	the	chip.

From	a	microcontroller’s	perspective	however,	3	seconds	is	a	very	long	time	(240	million	clockcycles),	so	unless	you	do	some
extremely	heavy	number	crunching,	or	sending	extremely	long	strings	over	Serial,	you	won’t	be	affected	by	this.	Just	keep	in	mind
that	you	add	the	yield();	inside	your	for	or	while	loops	that	could	take	longer	than,	say	100ms.

Sources
This	is	where	I	got	most	of	my	information	to	writ	this	article,	there’s	some	more	details	on	the	GitHub	pages,	if	you’re	into	some	more
advanced	stuff,	like	EEPROM	or	deep	sleep	etc.

https://github.com/esp8266/Arduino/issues/2942
https://github.com/esp8266/Arduino/pull/2533/files
https://github.com/esp8266/Arduino/blob/master/doc/libraries.md
https://github.com/esp8266/Arduino/blob/master/doc/reference.md
https://github.com/esp8266/Arduino/blob/master/doc/boards.md

Wi-Fi
Using	the	ESP8266	as	a	simple	microcontroller	is	great,	but	the	reason	why	most	people	use	it,	is	its	Wi-Fi	capabilities.	In	this	chapter,
we'll	dive	into	the	wonderful	world	of	network	protocols,	like	Wi-Fi,	TCP,	UDP,	HTTP,	DNS	...	All	these	acronyms	might	intimidate	you,
but	I'll	try	my	best	to	explain	them	step-by-step	and	in	an	easy	way.

Some	paragraphs	are	in	italic.	These	provide	some	extra	information,	but	are	not	critical	to	understanding	the	ESP's	Wi-Fi	functions,	so
don't	get	frustrated	if	there	are	things	you	don't	understand.

It's	really	hard	to	give	a	clear	explanation,	without	over-complicating	things	and	while	keeping	it	short	enough	as	well.	If	you've	got
any	feedback	or	remarks,	be	sure	to	leave	a	comment	to	help	improve	this	article.	Thanks!

The	TCP/IP	stack
The	system	most	people	refer	to	as	'The	Internet'	isn't	just	one	protocol:	it's	an	entire	stack	of	layers	of	protocols,	often	referred	to	as
the	TCP/IP	stack.	We'll	go	over	these	different	layers,	because	we	need	to	understand	how	our	ESP8266	communicates	with	other
devices	on	the	network.

Layer Protocols
Application HTTP,	FTP,	mDNS,	WebSocket,	OSC	...
Transport TCP,	UDP
Internet IP
Link Ethernet,	Wi-Fi	...

The	Link	layer

The	link	layer	contains	the	physical	link	between	two	devices,	an	Ethernet	cable,	for	example,	or	a	Wi-Fi	connection.	This	is	the	layer
that	is	closest	to	the	hardware.
To	connect	an	ESP8266	to	the	network,	you	have	to	create	a	Wi-Fi	link.	This	can	happen	in	two	different	ways:

1.	 The	ESP8266	connects	to	a	wireless	access	point	(WAP	or	simply	AP).	The	AP	can	be	built-in	to	your	modem	or	router,	for
example.	
In	this	configuration,	the	ESP	acts	like	a	wireless	station.	

2.	 The	ESP8266	acts	as	an	access	point	and	wireless	stations	can	connect	to	it.	These	stations	could	be	your	laptop,	a
smartphone,	or	even	another	ESP	in	station	mode.

Once	the	Wi-Fi	link	is	established,	the	ESP8266	is	part	of	a	local	area	network	(LAN).	All	devices	on	a	LAN	can	communicate	with
each	other.
Most	of	the	time,	the	AP	is	connected	to	a	physical	Ethernet	network	as	well,	this	means	that	the	ESP8266	can	also	communicate	with
devices	that	are	connected	to	the	AP	(modem/router)	via	a	wired	Ethernet	connection	(desktop	computers,	gaming	consoles	and	set-
top	boxes,	for	instance).
If	the	ESP8266	is	in	access	point	mode,	it	can	communicate	with	any	station	that	is	connected	to	it,	and	two	stations	(e.g.	a	laptop	and
a	smartphone)	can	also	communicate	with	each	other.

The	ESP	can	be	used	in	AP-only,	station-only,	or	AP+station	mode.

TL;DR

The	link	layer	is	the	physical	link	between	devices:	in	the	case	of	the	ESP8266,	this	is	a	WiFi	connection.	The	ESP	can	act	as	a	station
and	connect	to	an	access	point,	or	act	as	an	access	point	and	let	other	devices	connect	to	it.

The	Internet	or	Network	layer

Although	the	devices	are	now	physically	connected	(either	through	actual	wires	(Ethernet)	or	through	radio	waves	(Wi-Fi)),	they	can't
actually	talk	to	each	other	yet,	because	they	have	no	way	of	knowing	where	to	send	the	message	to.	
That's	where	the	Internet	Protocol	(IP)	comes	in.	Every	device	on	the	network	has	a	personal	IP	address.	The	DHCP	server	(Dynamic
Host	Configuration	Protocol	Server)	makes	sure	that	these	addresses	are	unique.	
This	means	that	you	can	now	send	a	message	to	a	specific	address.

There	are	two	versions	of	the	Internet	Protocol:	IPv4	and	IPv6.	IPv6	is	an	improved	version	of	IPv4	and	has	much	more	addresses	than
IPv4	(because	there	are	much	more	devices	than	available	IPv4	addresses).	In	this	article,	we'll	only	talk	about	IPv4	addresses,	since
most	LANs	still	use	them.

The	IP	address	consists	of	4	numbers,	for	example	192.168.1.5	is	a	valid	IPv4	address.	It	actually	consists	of	two	parts:	the	first	part	is
192.168.1,	this	is	the	address	of	the	local	network.	The	last	digit,	5	in	this	case,	is	specific	to	the	device.	

By	using	IP	addresses,	we	can	find	the	ESP8266	on	the	network,	and	send	messages	to	it.	The	ESP	can	also	find	our	computer	or	our
phone,	if	it	knows	their	respective	IP	addresses.

Sub-net	mask	(optional)

This	subdivision	of	the	IP	address	is	determined	by	the	sub-net	mask,	often	written	as	255.255.255.0.	You	can	see	that	it	consists	of
four	numbers,	just	like	the	IP	address.	If	a	part	of	the	sub-net	mask	is	255,	it	means	that	the	corresponding	part	of	the	IP	address	is
part	of	the	network	address,	if	it's	0,	the	corresponding	IP	part	is	part	of	the	address	of	the	specific	address.	A	different	notation	to	"IP:
192.168.1.5,	sub-net	mask:	255.255.255.0"	would	be	"192.168.1.5/24",	because	the	binary	representation	of	the	sub-net	mask	is
11111111.11111111.11111111.00000000,	and	it	has	24	ones.
If	you	want	to	know	more	about	sub-nets,	I'd	recommend	you	to	read	the	Wikipedia	article.	
(A	quick	tip	to	help	you	remember:	it's	called	the	sub-net	mask,	because	if	you	perform	a	bitwise	AND	operation	on	the	IP	address	and
the	sub-net	mask	(i.e.	use	the	sub-net	mask	as	a	mask	for	the	IP	address),	you	get	the	address	of	the	sub-net.)

MAC	addresses	and	ARP	(optional)

It	is	actually	impossible	to	send	packets	directly	to	another	machine	using	only	the	IP	address.	To	send	a	packet	to	a	specific	device	on
the	LAN	(Wi-Fi	or	Ethernet),	you	have	to	know	its	MAC-address.	The	MAC	address	is	a	unique	number	that	is	unique	for	every	network
device,	and	it	never	changes,	it's	hardwired	in	the	network	chip.	This	means	that	every	ESP8266,	every	network	card,	every
smartphone	...	ever	made,	has	a	different	MAC	address.	
So	before	the	ESP	can	send	a	packet	to	your	smartphone	for	example,	it	has	to	know	its	MAC	address.	It	doesn't	know	this	yet,	the	ESP
only	knows	the	IP	address	of	the	smartphone,	say	192.168.1.6.	To	do	this,	the	ESP	sends	a	broadcast	message	(i.e.	a	message
addressed	to	all	devices	on	the	LAN)	saying	"I'm	looking	for	the	MAC	address	of	the	device	with	the	IP	address	192.168.1.6".	The	ESP
also	includes	its	own	IP	and	MAC	address	with	the	message.	When	the	smartphone	receives	this	broadcast	message,	it	recognizes	its
own	IP	address,	and	responds	to	the	ESP	by	sending	its	own	MAC	address.	Now	the	ESP	and	the	phone	both	know	each	other's	IP	and
MAC	addresses,	and	they	can	communicate	using	IP	addresses.	This	method	is	called	the	Addres	Resolution	Protocol,	or	ARP.

What	about	the	Internet?

As	you	might	have	noticed,	I	only	talked	about	the	local	area	network,	these	are	the	computers	in	your	own	house.	So	how	can	the
ESP8266	communicate	with	the	Internet,	you	may	ask?	Well,	there's	a	lot	of	network	infrastructure	involved	in	'The	Internet',	and	they
all	obey	the	IP	rules,	to	make	sure	most	of	your	packets	arrive	at	there	destination.	It's	not	that	simple	of	course,	there's	a	lot	of	things
going	on,	like	routing	and	Network	Address	Translation	(NAT),	but	that	falls	outside	the	scope	of	this	article,	and	it's	not	really
something	most	people	have	to	worry	about.

TL;DR

The	Internet	layer	uses	IP	addresses	in	order	to	know	where	it	should	send	the	data.	This	means	that	two	devices	can	now	send
packets	of	data	to	each	other,	even	over	the	Internet.

The	Transport	layer

The	different	devices	in	the	network	do	their	best	to	deliver	these	IP	packets	to	the	addressee,	however,	it's	not	uncommon	for	a
packet	to	get	lost,	so	it	will	never	arrive.	Or	the	packet	might	get	corrupted	on	the	way:	the	data	is	no	longer	correct.	IP	also	can't
guarantee	that	the	packets	arrive	in	the	same	order	they	were	sent	in.
This	means	that	we	can't	reliably	send	messages	yet	by	only	using	the	link	and	the	Internet	layer,	since	we	can	never	know	when	and
whether	a	packet	will	arrive,	or	know	for	certain	that	a	received	packet	is	correct.
We	need	a	third	layer	on	top	of	the	Internet	layer:	the	Transport	layer.

There	are	mainly	two	protocols	that	make	up	this	third	layer:	the	Transmission	Control	Protocol	(TCP)	and	the	User	Datagram	Protocol
(UDP).

TCP	makes	sure	that	all	packets	are	received,	that	the	packets	are	in	order,	and	that	corrupted	packets	are	re-sent.	This	means
that	it	can	be	used	for	communication	between	multiple	applications,	without	having	to	worry	about	data	integrity	or	packet
loss.	This	is	why	it's	used	for	things	like	downloading	webpages,	sending	email,	uploading	files	etc.
UDP	on	the	other	hand,	doesn't	guarantee	that	every	packet	reaches	its	destination,	it	does	check	for	errors	however,	but
when	it	finds	one,	it	just	destroys	the	packet,	without	re-sending	it.	This	means	that	it's	not	as	reliable	as	TCP,	but	it's	faster,
and	has	a	much	lower	latency,	because	it	doesn't	require	an	open	connection	to	send	messages,	like	TCP	does.	That's	why	it's
used	in	voice	and	video	chats,	and	for	example	in	online	games.

If	you	want	to	know	more	about	the	differences	between	TCP	and	UDP,	check	out	this	video.

TL;DR

The	IP	protocol	is	not	reliable,	and	has	no	error	checking.	TCP	solves	this	by	re-sending	lost	or	corrupt	packages,	and	orders	packets
that	are	received	in	the	wrong	order.	UDP	also	checks	for	corrupt	packages,	but	doesn't	re-send	them,	so	it	has	less	latency	than	TCP.

The	Application	layer

We	now	have	reliable	communication	using	TCP,	but	there's	still	one	problem.	Think	of	it	this	way:	you	are	sending	a	letter,	and	TCP
guarantees	that	it	will	arrive	at	its	destination,	but	if	the	receiver	doesn't	understand	the	language	it's	written	in,	he	won't	know	what
to	do	with	it.
In	other	words,	we	need	a	fourth	layer	of	protocols,	for	two	programs	to	be	able	to	communicate	with	each	other.
There's	lots	of	different	protocols	out	there,	but	we'll	mostly	focus	on	the	protocols	for	web	servers	and	browsers.

HyperText	Transfer	Protocol	

The	HyperText	Transfer	Protocol,	or	HTTP,	is	the	protocol	(cfr.	language)	that	is	used	by	both	web	servers	and	web	clients	in	order	to
communicate.	It	uses	text	to	perform	send	requests	and	responses	from	the	client	to	the	server	and	back	again.
For	example,	when	you	type	http://www.google.com	into	the	address	bar	of	a	web	browser	(client),	it	will	send	an	HTTP	GET	request	to
the	Google	web	server.	The	server	understands	this	HTTP	request,	and	will	send	the	Google	webpage	as	a	response.	Or	when	you
upload	an	image	to	Instagram,	your	browser	sends	an	HTTP	POST	request	with	your	selfie	attached	to	the	Instagram	server.	The
server	understands	the	request,	saves	the	image	and	adds	it	into	the	database,	sends	the	URL	of	the	new	image	back	to	your	browser,
and	the	browser	will	add	the	image	on	the	webpage.
As	you	can	see,	neither	the	client	nor	the	server	has	to	worry	about	the	integrity	of	the	messages	they	send,	and	they	know	that	the
recipient	understands	their	language,	and	that	it	will	know	what	to	do	with	a	certain	HTTP	request.	
Most	modern	sites	use	a	secure	version	of	HTTP,	called	HTTPS.	This	secure	connection	encrypts	the	data,	for	security	reasons.	(You
don't	want	anyone	reading	the	packets	from	your	mail	server,	or	the	packets	you	sent	to	your	bank,	for	instance.)

WebSocket

HTTP	is	great	for	things	like	downloading	webpages,	uploading	photos	etc.	but	it's	quite	slow:	every	time	you	send	an	HTTP	request,
you	have	to	start	a	new	TCP	connection	to	the	server,	then	send	your	request,	wait	for	the	server	to	respond,	and	download	the
response.	Wouldn't	it	be	great	if	we	didn't	have	to	open	a	new	connection	every	time	we	want	to	send	some	data,	and	if	we	could
send	and	receive	data	at	the	same	time	at	any	moment	we'd	like?	That's	where	WebSocket	comes	to	the	rescue:	you	can	keep	the	TCP
connection	with	the	server	open	at	all	times,	you	get	perfect	TCP	reliability,	and	it's	pretty	fast.

Open	Sound	Control

HTTP	and	WebSocket	both	use	TCP	connections.	What	if	you	want	lower	latency?	Well,	Open	Sound	Control,	or	OSC,	uses	UDP	to	send
small	pieces	of	data,	like	ints,	floats,	short	text	etc	...	with	very	low	latency.	It	was	originally	designed	for	controlling	low	latency	audio
applications,	but	it's	a	very	flexible	protocol,	so	it's	often	used	for	low-latency	tasks	other	than	audio	control.

Domain	Name	System

As	mentioned	before,	you	can	only	send	a	message	to	another	computer	if	you	know	its	IP	address.	But	when	you	browse	the	Internet,
you	only	know	a	website's	domain	name	(e.g.	www.google.com).	Your	computer	uses	the	Domain	Name	System	to	translate	this
domain	name	to	the	right	IP	address.	More	on	this	later.

Sources

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol

Uploading	sketches	to	the	ESP8266
The	upload	procedure	for	ESP8266	boards	is	a	little	different	from	the	normal	Arduino	procedure.	Most	Arduinos	will	automatically
reset	when	a	new	program	is	being	uploaded,	and	will	automatically	enter	programming	mode.
On	some	ESP	boards	you	have	to	manually	enter	programming	mode,	and	on	the	bare-bones	modules,	you	even	have	to	reset	them
manually.
However,	there	are	some	simple	circuits	you	can	use	to	get	automatic	uploads.

Auto-reset
This	only	applies	to	boards	without	an	on-board	USB-to-Serial	converter.

If	the	USB-to-Serial	converter	you're	using	has	a	DTR	flow	control	line,	you	can	automate	the	reset	signal.	When	sending	data	to	the
ESP,	the	DTR	line	goes	low,	and	stays	low	for	some	time.	To	reset	the	ESP,	we	need	a	low	pulse	on	the	RST	pin.	The	problem	is	that	the
DTR	pin	stays	low.	To	solve	this,	we're	going	to	build	a	crude	edge	detector	circuit,	using	a	capacitor.	Take	a	look	at	the	following
schematic:

You	might	recognize	that	this	is	basically	a	low-cut	filter.	In	normal	conditions,	DTR	is	high	(3.3V),	and	the	reset	line	is	also	high,
because	of	the	pull-up	resistor	R2.	This	means	that	the	voltage	across	the	capacitor	is	0V.	When	DTR	suddenly	drops	(to	0V),	the
voltage	across	the	capacitor	is	still	0V,	meaning	that	the	reset	line	will	be	at	0V	+	0V	=	0V,	and	a	reset	is	triggered.

However,	C1	immediately	starts	charging	through	R2,	and	reaches	3.3V.	At	this	point,	DTR	is	still	at	0V,	meaning	that	there's	now	3.3V
across	the	capacitor.	When	DTR	rises	again,	the	reset	line	will	be	at	3.3V	+	3.3V	=	6.6V,	and	then	immediately	starts	to	discharge
through	R2,	finally	reaching	3.3V	again,	with	0V	across	C1.
This	is	a	problem:	6.6V	can	damage	the	ESP,	so	we	have	to	find	a	way	to	get	rid	of	the	positive	peak.

One	glance	at	this	MATLAB	simulation	shows	us	the	problem	even	better:

The	blue	signal	is	the	voltage	on	the	DTR	pin,	and	the	yellow	signal	is	the	voltage	on	the	reset	pin.

The	solution	is	to	add	a	diode:	while	charging	the	capacitor,	it	shouldn't	change	anything,	so	it	should	be	reverse	biased	(just	a	fancy
way	of	saying	that	it's	not	conducting	any	current	because	the	polarity	is	the	other	way	around),	and	while	the	capacitor	is
discharging,	it	should	discharge	the	capacitor	"immediately".
Here's	what	that	looks	like:

Let's	run	the	simulation	again	to	check	if	our	problem	is	solved:

As	you	can	see,	the	6.6V	peak	is	now	very	narrow,	just	like	we	wanted.	It's	impossible	to	discharge	the	capacitor	instantly,	that	would
require	a	capacitor	and	a	diode	with	0Ω	of	series	resistance,	and	an	infinite	current,	which	is	impossible,	obviously.	There's	also	a
smaller	but	relatively	wide	peak	of	approximately	3.9V.	This	is	because	a	diode	only	conducts	when	the	voltage	across	it	is	higher	than
~600mV.	This	means	that	the	last	0.6V	that's	left	in	the	capacitor	(from	3.9	to	3.3V)	will	still	be	discharged	through	R2	only.	
Nevertheless,	the	voltage	peak	is	much	lower	and	narrower	than	without	the	diode,	and	it's	safe	to	connect	to	the	ESP8266.

This	exact	circuit	is	also	used	in	the	Arduino	Uno,	for	example.

Note:	if	you	followed	the	instructions	in	the	hardware	step	correctly,	you	should	already	have	added	R2	to	your	ESP.

How	to	use	Auto-reset

To	use	this	auto-reset	circuit,	connect	it	to	the	DTR	line	of	your	USB-to-Serial	converter,	and	to	the	reset	line	of	the	ESP,	as	shown	in
the	diagram.	Then	click	compile	(just	because	the	first	compilation	can	take	quite	some	time).	Go	to	Tools	>	Reset	and	select	'ck'.
When	it's	done	compiling,	hold	down	the	program	button	we	added	in	the	hardware	step,	and	click	upload.	Wait	for	it	to	say
"Uploading..."	and	then	release	the	program	button.

Auto-reset	and	Auto-program

This	only	applies	to	boards	without	an	on-board	USB-to-Serial	converter.

The	method	above	still	requires	you	to	press	a	button	to	upload	a	new	sketch.	If	your	USB-to-Serial	converter	has	a	RTS	line	as	well	as
a	DTR	line,	you	can	automate	the	entire	process.

You	may	find	out	that	the	4.7kΩ	resistor	doesn't	work	for	you.	In	that	case,	try	some	other	value,	like	10kΩ,	for	example.

This	method	was	first	used	in	the	NodeMCU,	so	go	to	Tools	>	Reset	Method,	and	select	"nodemcu".	This	will	drive	the	DTR&RTS	pins
high	and	low	in	the	right	sequence	to	get	it	in	programming	mode	before	uploading.

This	is	by	far	the	best	method,	but	the	problem	is	that	you	need	access	to	both	the	RTS	and	DTR	pins,	while	most	USB-to-Serial
adapters	break	out	only	one	of	the	two.

Manual	reset	and	manual	program
This	only	applies	to	boards	without	an	on-board	USB-to-Serial	converter.

If	you	don't	have	a	USB-to-Serial	converter	with	DTR	and	RTS	lines,	you	could	also	just	use	the	reset	and	program	buttons	we	added	in
the	hardware	chapter.	To	get	the	ESP	in	program	mode,	GPIO0	must	be	low	while	booting:	

1.	 press	and	hold	the	reset	button
2.	 press	and	hold	the	program	button
3.	 release	the	reset	button,	the	ESP	will	boot	in	program	mode
4.	 release	the	program	button
5.	 upload	the	sketch

If	you	want	to	get	out	of	program	mode	without	uploading,	just	press	reset	(without	pressing	the	program	button).

Board	options

If	your	specific	board	is	in	the	Tools	>	Board	list	(e.g.	NodeMCU,	SparkFun	and	Adafruit	boards),	you	can	just	select	it,	and	you	will	get
the	right	settings.	When	your	board	isn't	in	the	list,	you'll	have	to	select	a	Generic	ESP8266.	In	that	case	there's	lots	of	new	options	in
the	Tools	menu	of	the	Arduino	IDE,	so	let's	go	over	them	and	pick	the	right	settings.

Flash	Mode

Like	I	said	before,	the	ESP8266	uses	an	external	flash	chip	for	storage.	You	can	communicate	with	this	chip	over	2	datalines	(DIO),	or
over	all	4	datalines	(QIO).	Using	4	lines	is	two	times	faster	than	2	lines,	so	in	most	cases,	you	should	choose	QIO.	(If	you're	doing	some
advanced	stuff	and	you	need	2	more	GPIO	pins,	you	could	use	2	lines	instead	of	4,	and	use	the	2	lines	as	I/O.	Most	modules	don't	give
you	access	to	these	pins,	though.)

Flash	Size

Different	boards/modules	have	different	sizes	of	flash	chips	on	board.	There	are	boards	with	512kB,	1MB,	2MB	and	4MB	of	flash.	To

know	how	much	flash	your	board	has,	you	can	try	the	Examples	>	ESP8266	>	CheckFlashConfig	to	see	if	your	flash	setting	is	correct,
or	you	can	check	the	specifications	of	your	specific	board	online.
You	can	also	select	the	SPIFFS	(SPI	Flash	File	System)	size.	The	SPIFFS	partition	is	a	small	file	system	to	store	files.	If	you're	not	using
it,	you	can	select	the	minimum.	Later	on	in	the	article,	we'll	use	SPIFFS,	and	I'll	remind	you	to	select	a	larger	SPIFFS	size,	but	for	now,
it	doesn't	really	matter.

Debug	port

There's	a	load	of	things	going	on	when	the	ESP	is	running:	Things	like	Wi-Fi	connections,	TCP	connections,	DNS	lookups	...	you	name	it.
All	these	small	tasks	produce	a	whole	lot	of	debug	output	to	help	you	troubleshoot.	However,	in	a	normal	situation,	where	your
program	is	behaving	as	expected,	you	don't	need	all	those	debug	messages	to	flood	the	Serial	Monitor,	so	you	can	just	turn	them	off
by	selecting	'Disabled'.	
If	you	do	wish	to	receive	debug	messages,	you	can	select	the	port	to	send	them	to.	(Serial	on	pins	1	and	3,	or	Serial1	on	pin	2)

Debug	level

This	allows	you	to	choose	what	kind	of	debug	messages	you	want	to	show.

Reset	Method

As	mentioned	in	the	paragraphs	above,	there	are	different	methods	for	auto-reset	and	auto-program.	If	you're	using	the	first	method
(using	the	edge	detector),	you	should	use	'ck',	if	you	use	the	two-transistor	circuit,	select	'nodemcu'.

Flash	Frequency

If	you	need	some	extra	memory	speed,	you	could	change	the	flash	frequency	from	40MHz	to	80MHz.	This	is	the	clock	frequency	of	the
SPI/SDIO	link.

CPU	Frequency

If	you	need	some	extra	CPU	performance,	you	can	double	the	clock	speed	from	80MHz	to	160MHz.	It's	actually	an	overclock,	but	I've
never	had	any	issues	or	instability.	

Upload	Speed

The	baud	rate	for	uploading	to	the	ESP.	The	default	is	115200	baud,	but	you	can	go	higher	(if	you're	changing	your	sketch	a	lot,	it
might	be	too	slow).	921600	baud	works	most	of	the	time,	but	you	may	get	an	error	sometimes,	if	that's	the	case,	switching	back	to
115200	will	probably	solve	all	problems.

Establishing	a	Wi-Fi	connection
Like	I	mentioned	in	the	previous	chapter,	the	ESP8266	can	operate	in	three	different	modes:	Wi-Fi	station,	Wi-Fi	access	point,	and	both
at	the	same	time.	We'll	start	by	looking	at	the	configuration	of	a	Wi-Fi	station.

Station	mode

Connecting	to	one	specific	network

#include	<ESP8266WiFi.h>								//	Include	the	Wi-Fi	library

const	char*	ssid					=	"SSID";									//	The	SSID	(name)	of	the	Wi-Fi	network	you	want	to	connect	to
const	char*	password	=	"PASSWORD";					//	The	password	of	the	Wi-Fi	network

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');
		
		WiFi.begin(ssid,	password);													//	Connect	to	the	network
		Serial.print("Connecting	to	");
		Serial.print(ssid);	Serial.println("	...");

		int	i	=	0;
		while	(WiFi.status()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect
				delay(1000);
				Serial.print(++i);	Serial.print('	');
		}

		Serial.println('\n');
		Serial.println("Connection	established!");		
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());									//	Send	the	IP	address	of	the	ESP8266	to	the	computer
}

void	loop()	{	}

The	code	to	connect	to	a	wireless	access	point	is	relatively	straightforward:	enter	the	SSID	and	the	password	of	the	network	you	want
to	connect	to,	and	call	the	WiFi.begin	function.	Then	wait	for	the	connection	to	complete,	et	voilà,	your	ESP8266	is	now	connected	to
your	Local	Area	Network.

Don't	believe	me?	I'll	prove	it	to	you:	open	the	Serial	monitor	(CTRL+SHIFT+M)	and	upload	the	sketch.	You	should	see	something	like
this:

Connecting	to	SSID	...
1	2	3	4	5	6	...

Connection	established!
IP	address: 192.168.1.3

Now	go	to	your	computer	and	open	up	a	terminal:	On	Windows,	search	for	"Command	Prompt",	on	Mac	or	Linux,	search	for	"Terminal".
You	could	also	use	the	shortcuts:	on	Windows,	hit 	+	R,	type	"cmd"	and	hit	enter,	on	Linux,	use	CTRL+ALT+T	.

Next,	type	ping	,	and	then	the	IP	address	you	received	in	the	Serial	monitor.	If	you're	on	Mac	or	Linux,	use	CTRL+C	to	stop	it	after	a
couple	of	lines.	The	output	should	look	something	like	this:

user@computername:~$ ping	192.168.1.3
PING	192.168.1.3	(192.168.1.3)	56(84)	bytes	of	data.
64	bytes	from	192.168.1.3:	icmp_seq=1	ttl=128	time=6.38	ms
64	bytes	from	192.168.1.3:	icmp_seq=2	ttl=128	time=45.2	ms
64	bytes	from	192.168.1.3:	icmp_seq=3	ttl=128	time=69.1	ms
64	bytes	from	192.168.1.3:	icmp_seq=4	ttl=128	time=94.0	ms
64	bytes	from	192.168.1.3:	icmp_seq=5	ttl=128	time=20.5	ms
64	bytes	from	192.168.1.3:	icmp_seq=6	ttl=128	time=7.37	ms
^C
---	192.168.1.3	ping	statistics	---
6	packets	transmitted,	6	received,	0%	packet	loss,	time	5003ms
rtt	min/avg/max/mdev	=	6.384/40.463/94.047/32.588	ms

The	ping	command	sends	small	packets	to	the	IP	address	of	the	ESP8266.	When	the	ESP	receives	such	a	packet,	it	sends	it	back	to	the
sender.	Ping	is	part	of	the	second	layer	of	the	TCP/IP	stack,	the	Internet	layer.	It	relies	on	both	the	Data	Link	layer	(Wi-Fi)	and	the
Internet	Protocol*.	
You	can	see	that	in	the	example	above,	we	sent	6	packets	to	the	ESP,	and	we	also	received	6	response	(echo)	packets.	This	tells	us
that	the	Data	Link,	the	Wi-Fi	connection,	and	the	Internet	Protocol	are	working	correctly.	

We	now	know	that	the	ESP	can	successfully	communicate	with	other	devices	on	the	network,	and	if	your	local	network	is	online	(if	it	is
connected	to	the	Internet	via	your	modem),	the	ESP	can	also	communicate	with	any	device	on	the	web	!

Ping	is	a	great	tool	to	check	if	the	ESP	(or	any	device,	really)	is	still	connected	to	the	network,	and	if	it's	still	working	fine.
One	drawback	is	that	IP	addresses	can	change	over	time,	but	that's	a	problem	we'll	address	in	one	of	the	following	chapters	...

(*)	I'm	simplifying	things	a	bit	here.	Actually,	ping	is	part	of	the	Internet	Control	Message	Protocol	(ICMP),	that's	also	part	of	the	second	layer,	just	like	the	Internet
Protocol.	Don't	worry	too	much	about	it,	just	remember	that	if	you	can	send	ping	packets	to	a	device,	you	can	also	send	IP	packets.

The	device	with	the	antenna	serves	many	different	purposes:	

Access	point:	Other	Wi-Fi	devices	can	connect	to	it,	to	be	part	of	the	local	network.
Router:	It	routes	IP	packets	to	the	right	sub-nets	so	that	they	will	arrive	at	their	destination.	E.g.	if	the	computer	sends	a
message	that	is	meant	for	the	ESP	over	the	Ethernet	sub-net,	the	router	will	send	the	packet	to	the	Wi-Fi	sub-net,	because	it
knows	that's	where	the	ESP	is.
Modem:	if	the	router	can't	find	the	addressee	on	the	local	network,	the	packet	will	be	passed	on	to	the	integrated	modem,	and	it
will	be	sent	to	the	Internet	Service	Provider	over	a	DSL	line,	heading	for	the	Internet,	where	lots	of	other	routers	will	try	to	get	the
packet	to	the	right	destination.

But	in	reality,	you	don't	have	to	worry	too	much	about	it,	because	it's	all	done	for	you,	in	a	fraction	of	a	second	without	you	even
noticing	it!

Automatically	connect	to	the	strongest	network

The	sketch	above	might	be	enough	for	your	specific	application,	but	if	you	need	to	be	able	to	connect	to	multiple	Wi-Fi	networks,	for
example	the	Wi-Fi	at	home	and	the	Wi-Fi	at	the	office,	it	won't	work.	
To	solve	this	problem,	we'll	use	the	Wi-Fi-Multi	library:	You	can	add	as	many	networks	as	you	like,	and	it	automatically	connects	to	the
one	with	the	strongest	signal.

#include	<ESP8266WiFi.h>								//	Include	the	Wi-Fi	library
#include	<ESP8266WiFiMulti.h>			//	Include	the	Wi-Fi-Multi	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(1000);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer
}

void	loop()	{	}

Access	Point	mode

To	configure	the	ESP8266	as	an	access	point,	to	allow	other	devices	like	smartphones	or	laptops	to	connect	to	it,	you	can	use	the
softAP	function:

#include	<ESP8266WiFi.h>								//	Include	the	Wi-Fi	library

const	char	*ssid	=	"ESP8266	Access	Point";	//	The	name	of	the	Wi-Fi	network	that	will	be	created
const	char	*password	=	"thereisnospoon";			//	The	password	required	to	connect	to	it,	leave	blank	for	an	open	network

void	setup()	{
		Serial.begin(115200);
		delay(10);
		Serial.println('\n');

		WiFi.softAP(ssid,	password);													//	Start	the	access	point
		Serial.print("Access	Point	\"");
		Serial.print(ssid);
		Serial.println("\"	started");

		Serial.print("IP	address:\t");
		Serial.println(WiFi.softAPIP());									//	Send	the	IP	address	of	the	ESP8266	to	the	computer
}

void	loop()	{	}

To	see	if	it	works,	open	the	Wi-Fi	settings	on	your	computer,	look	for	a	network	called	"ESP8266	Access	Point",	enter	the	password
"thereisnospoon",	and	connect	to	it.	Then	open	a	terminal,	and	ping	to	192.168.4.1	(this	is	the	default	IP	address	of	our	ESP	AP).	You'll
see	that	the	ESP	responds	to	your	pings.	

However,	if	you	try	to	go	to	an	online	website,	you'll	get	a	timeout	or	a	DNS	error.	This	is	because	the	ESP	itself	is	not	connected	to	the
internet.	The	sub-net	that	consists	of	the	ESP	and	the	computer	is	not	connected	to	any	other	networks,	so	there's	no	way	for	a	packet
on	this	network	to	make	it	to	the	Internet.

If	you	connected	a	second	station	to	the	ESP	access	point	on	the	other	hand,	you	would	be	able	to	ping	from	one	station	to	the	other
without	problems,	because	they're	on	the	same	network.

Multicast	Domain	Name	System
DNS

Let's	face	it,	constantly	typing	IP	addresses	is	really	cumbersome,	and	it	would	be	impossible	to	remember	all	your	favorite	websites'
addresses,	especially	if	they	use	IPv6.
That's	why	domain	names	were	introduced:	a	simple	string	of	text	that's	easy	to	remember,	for	example	www.google.com.	

However,	to	send	a	request	to	a	website,	your	computer	still	needs	to	know	its	IP	address.	That's	where	DNS	comes	in.	It	stands	for
Domain	Name	System,	and	is	a	way	to	translate	a	website's	domain	name	to	its	IP	address.	On	the	Internet,	there	are	a	lot	of	DNS
servers.	Each	DNS	server	has	a	long	list	of	domain	names	and	their	corresponding	IP	addresses.	Devices	can	connect	to	a	DNS	server
and	send	a	domain	name,	the	DNS	server	will	then	respond	with	the	IP	address	of	the	requested	site.
You	could	compare	it	to	a	telephone	directory:	you	can	look	up	a	name	to	find	the	corresponding	phone	number.

The	DNS	lookup	happens	completely	in	the	background:	when	you	go	to	a	website	in	your	browser,	it	will	first	send	a	request	to	a	DNS
server	(this	implies	that	the	computer	knows	the	IP	address	of	the	DNS	server	itself),	wait	for	the	response	of	the	lookup,	and	then
send	the	actual	request	to	the	right	IP	address.

mDNS

DNS	works	great	for	normal	sites	on	the	Internet,	but	most	local	networks	don't	have	their	own	DNS	server.	This	means	that	you	can't
reach	local	devices	using	a	domain	name,	and	you're	stuck	using	IP	addresses	...

Fortunately,	there's	another	way:	multicast	DNS,	or	mDNS.	
mDNS	uses	domain	names	with	the	.local	suffix,	for	example	http://esp8266.local.	If	your	computer	needs	to	send	a	request	to	a
domain	name	that	ends	in	.local,	it	will	send	a	multicast	query	to	all	other	devices	on	the	LAN	that	support	mDNS,	asking	the	device
with	that	specific	domain	name	to	identify	itself.	The	device	with	the	right	name	will	then	respond	with	another	multicast	and	send	its
IP	address.	Now	that	your	computer	knows	the	IP	address	of	the	device,	it	can	send	normal	requests.

Luckily	for	us,	the	ESP8266	Arduino	Core	supports	mDNS:

#include	<ESP8266WiFi.h>								//	Include	the	Wi-Fi	library
#include	<ESP8266WiFiMulti.h>			//	Include	the	Wi-Fi-Multi	library
#include	<ESP8266mDNS.h>								//	Include	the	mDNS	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(1000);
				Serial.print(++i);	Serial.print('	');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(!MDNS.begin("esp8266"))	{													//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("Error	setting	up	MDNS	responder!");
		}
		Serial.println("mDNS	responder	started");
}

void	loop()	{	}

Upload	it	and	open	ping	again.	Try	to	ping	to	esp8266.local:

user@computername:~$ ping	esp8266.local
PING	esp8266.local	(10.92.237.128)	56(84)	bytes	of	data.
64	bytes	from	10.92.237.128:	icmp_seq=1	ttl=128	time=5.68	ms
64	bytes	from	10.92.237.128:	icmp_seq=2	ttl=128	time=3.41	ms
64	bytes	from	10.92.237.128:	icmp_seq=3	ttl=128	time=2.55	ms
64	bytes	from	10.92.237.128:	icmp_seq=4	ttl=128	time=2.19	ms
64	bytes	from	10.92.237.128:	icmp_seq=5	ttl=128	time=2.29	ms
64	bytes	from	10.92.237.128:	icmp_seq=6	ttl=128	time=2.74	ms
^C
---	esp8266.local	ping	statistics	---
6	packets	transmitted,	6	received,	0%	packet	loss,	time	5007ms
rtt	min/avg/max/mdev	=	2.190/3.148/5.687/1.202	ms

As	you	can	see,	ping	will	automatically	find	the	IP	address	of	the	ESP	for	you.

mDNS	is	supported	on	Windows,	OSX,	Linux	and	iOS,	but	not	(yet?)	on	Android.
It's	a	real	shame	that	Android	doesn't	support	it,	you	can	help	by	starring	this	issue	report	for	the	Chromium	project	to	ask	for	mDNS
support	in	Chrome	on	Android.

Of	course,	you	can	change	the	domain	name	of	the	ESP	by	changing	the	parameter	of	MDNS.begin.

ESP8266	Web	Server
Being	able	to	ping	the	ESP	is	quite	an	achievement	if	you	look	at	it	from	a	technical	point	of	view,	but	for	most	people,	it's	not	that
exciting,	and	not	really	useful.
In	this	chapter,	I'll	cover	the	basics	of	a	web	server,	and	teach	you	how	to	host	a	web	page	on	the	ESP.

Web	servers
A	web	server	is	an	Internet-connected	device	that	stores	and	serves	files.	Clients	can	request	such	a	file	or	another	piece	of	data,	and
the	server	will	then	send	the	right	data/files	back	to	the	client.	Requests	are	made	using	HTTP.	

HTTP

HTTP	or	the	Hypertext	Transfer	Protocol	is	the	text-based	protocol	used	to	communicate	with	(web)	servers.	There	are	multiple	HTTP
request	methods,	but	I'll	only	cover	the	two	most	widely	used	ones:	GET	and	POST.	

HTTP	GET

GET	requests	are	used	to	retrieve	data	from	a	server,	a	web	page	for	instance.	It	shouldn't	change	anything	on	the	server,	it	just
gets	the	data	from	the	server,	without	side	effects.

When	you	open	a	webpage	in	your	browser,	it	will	take	the	URL	and	put	it	in	an	HTTP	GET	request.	This	is	just	plain	text.	Then	it	will
send	the	request	to	the	right	server	using	TCP.	The	server	will	read	the	request,	check	the	URL,	and	send	the	right	HTTP	response	for
that	URL	back	to	the	browser.

The	anatomy	of	a	GET	request

The	most	important	parts	of	a	GET	request	are	the	request	line	and	the	host	header.	Let's	take	a	look	at	an	example:
If	you	click	the	following	link:	https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html,	your	browser	will	send	out	the	following	HTTP
request:

GET	/Protocols/rfc2616/rfc2616-sec5.html	HTTP/1.1
Host:	www.w3.org
Connection:	keep-alive
Pragma:	no-cache
Cache-Control:	no-cache
Upgrade-Insecure-Requests:	1
User-Agent:	Mozilla/5.0	(X11;	Linux	x86_64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/56.0.2924.87	Safari/537.36
Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
DNT:	1
Referer:	https://www.google.be/
Accept-Encoding:	gzip,	deflate,	sdch,	br
Accept-Language:	en-US,en;q=0.8

The	first	line	is	the	request	line:	it	contains	the	request	method:	GET,	in	this	case,	the	URI	or	Uniform	Resource	Identifier:
/Protocols/rfc2616/rfc2616-sec5.html,	and	the	HTTP	version:	1.1.
The	second	line	is	the	host	header,	it	specifies	the	domain	name	of	the	host	(server).
There	are	many	other	headers	as	well,	but	they're	not	really	important	when	using	an	ESP8266.
Most	servers	will	check	if	the	URI	is	a	file	on	their	file	system,	and	if	that's	the	case,	they'll	send	that	file	as	a	response.

Viewing	HTTP	headers	in	the	browser

If	you	want	to	check	the	headers	your	browser	sends,	you	can	press	F12,	go	to	the	network	tab,	reload	the	page,	and	click	the	request
you	want	to	inspect.	If	you	want,	you	can	click	'view	source',	this	will	show	you	the	actual	HTTP	text.
Here's	what	that	looks	like	in	Chrome:

Sending	extra	information	to	the	server

Sometimes,	you	might	want	to	add	extra	information	to	the	GET	request.	You	can	send	key-value	pairs	by	adding	a	question	mark	(?)
to	the	URI,	followed	by	key=value.	Multiple	pairs	are	separated	by	an	ampersand	(&).
For	example:

GET	/get-phone-number.php?firstName=John&lastName=Doe	HTTP/1.1
Host:	www.phonebook.example.com
...

If	you	use	any	special	characters	in	the	key	or	value	names,	you	have	to	URL-encode	them.

HTTP	POST

POST	requests	are	used	to	send	data	to	the	server,	for	example,	to	send	your	user	name	and	password	to	the	server	when	you	log	in,
or	when	you	upload	a	photo.	Unlike	GET,	POST	can	change	the	data	on	the	server	or	the	state	of	the	server.	
POST	has	a	body	that	can	contain	data	that	is	sent	to	the	server.

The	anatomy	of	a	POST	request

For	example,	the	login	page	of	your	favorite	site	might	send	something	like	this	when	you	enter	your	credentials	and	click	the
login	button:

POST	/login.php	HTTP/1.1
Host:	www.example.com
Connection:	keep-alive
Content-Length:	480
Origin:	http://www.example.com
Content-Type:	multipart/form-data;	boundary=----WebKitFormBoundaryQNEJOasMvgAOg8Kt
...

As	you	can	see,	the	request	line	now	has	the	POST	method	in	it,	and	is	still	followed	by	a	URI,	/login.php,	and	the	HTTP	version,	1.1.
The	host	header	still	contains	just	the	domain	name.

The	real	difference	is	the	request	body:	a	GET	request	has	no	payload,	while	you	can	add	a	lot	of	data	to	the	body	of	a	POST	request.
This	data	could	be	normal	key-value	pairs,	like	a	username	and	a	password,	or	actual	files	that	are	being	uploaded.	
Also	note	the	Content-Type	header:	it	tells	the	server	what	kind	of	data	can	be	found	in	the	body	of	the	POST	request.

Let's	take	a	look	at	the	body	of	the	login	example:	

------WebKitFormBoundaryQNEJOasMvgAOg8Kt
Content-Disposition:	form-data;	name="username"

John	Doe
------WebKitFormBoundaryQNEJOasMvgAOg8Kt
Content-Disposition:	form-data;	name="password"

p@ssw0rd123
------WebKitFormBoundaryQNEJOasMvgAOg8Kt
Content-Disposition:	form-data;	name="token"

9i9ZoLHl5pkRAeuKCEu76TbaCnMphwYkPEovEUY9PHk=
------WebKitFormBoundaryQNEJOasMvgAOg8Kt--

As	you	can	see,	there	are	three	parameters	inside	the	body,	every	parameter	has	a	name	(e.g.	username),	and	a	value	(e.g.	John
Doe).

You	could	also	use	the	same	syntax	we	used	before	when	adding	parameters	to	a	GET	request:

POST	/add-user.php	HTTP/1.1
Host:	www.example.com
Content-Length:	27
Content-Type:	application/x-www-form-urlencoded
...

And	the	payload:

firstName=John&lastName=Doe

As	you	can	see,	the	Content-Typeheader	is	different,	indicating	that	the	encoding	of	the	values	in	the	payload	is	different.

HTTP	status	codes
A	server	should	answer	all	requests	with	an	HTTP	status	code.	This	is	a	3-digit	number	indicating	if	the	request	was	successful	or
telling	the	client	what	went	wrong.	Here's	a	table	with	some	of	the	most	important	and	useful	ones.
Status	Code Meaning
200 OK:	the	request	was	successful
303 See	Other:	used	to	redirect	to	a	different	URI,	after	a	POST	request,	for	instance
400 Bad	Request:	the	server	couldn't	understand	the	request,	because	the	syntax	was	incorrect
401 Unauthorized:	user	authentication	is	required
403 Forbidden:	the	server	refuses	to	execute	the	request,	authorization	won't	help
404 Not	Found:	the	requested	URI	was	not	found
500 Internal	Server	Error:	The	server	encountered	an	unexpected	condition	and	couldn't	fulfill	the	request

TCP	&	UDP	Ports

In	most	cases,	one	device	has	many	different	services,	for	example,	a	web	server,	an	email	server,	an	FTP	server,	a	Spotify	streaming
service,	...
If	the	device	had	just	an	IP	address,	it	would	be	impossible	to	know	which	application	a	packet	was	sent	to.	That's	why	every	service
has	a	port	number.	It's	an	identifier	for	all	different	services	or	applications	on	a	single	device.	In	the	example	above,	the	web	server
will	only	listen	for	requests	on	port	80,	the	email	server	only	on	port	25,	the	FTP	server	only	on	port	20,	Spotify	will	only	receive
streams	on	port	4371	...
To	specify	a	certain	port,	you	can	use	a	colon	after	the	IP	address	of	after	the	domain	name.	But	most	of	the	time,	you	don't	have	to
add	it	explicitly.	For	example,	all	web	servers	listen	on	port	80,	so	a	web	browser	will	always	connect	to	port	80.

http://stackoverflow.com/questions/176264/what-is-the-difference-between-a-uri-a-url-and-a-urn
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

ESP8266	First	Web	Server
The	actual	implementation	of	a	web	server	is	much	easier	than	it	sounds,	because	the	ESP8266	Arduino	Core	includes	some	great
libraries	that	handle	pretty	much	everything	for	you.	Let's	look	at	a	basic	Hello	World!	example.

#include	<ESP8266WiFi.h>
#include	<WiFiClient.h>
#include	<ESP8266WiFiMulti.h>	
#include	<ESP8266mDNS.h>
#include	<ESP8266WebServer.h>			//	Include	the	WebServer	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server(80);				//	Create	a	webserver	object	that	listens	for	HTTP	request	on	port	80

void	handleRoot();														//	function	prototypes	for	HTTP	handlers
void	handleNotFound();

void	setup(void){
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(MDNS.begin("esp8266"))	{														//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("mDNS	responder	started");
		}	else	{
				Serial.println("Error	setting	up	MDNS	responder!");
		}

		server.on("/",	handleRoot);															//	Call	the	'handleRoot'	function	when	a	client	requests	URI	"/"
		server.onNotFound(handleNotFound);								//	When	a	client	requests	an	unknown	URI	(i.e.	something	other	than	"/"),	call	function	
"handleNotFound"

		server.begin();																											//	Actually	start	the	server
		Serial.println("HTTP	server	started");
}

void	loop(void){
		server.handleClient();																				//	Listen	for	HTTP	requests	from	clients
}

void	handleRoot()	{
		server.send(200,	"text/plain",	"Hello	world!");			//	Send	HTTP	status	200	(Ok)	and	send	some	text	to	the	browser/client
}

void	handleNotFound(){
		server.send(404,	"text/plain",	"404:	Not	found");	//	Send	HTTP	status	404	(Not	Found)	when	there's	no	handler	for	the	URI	in	the	
request
}

There's	a	lot	of	code	that's	the	same	as	in	the	Wi-Fi	and	mDNS	examples.
The	actual	server	code	is	pretty	straightforward.	First,	we	create	a	server	instance	that	listens	for	HTTP	requests	on	port	80.	This	is	the
default	port	for	web	servers.	In	the	setup,	we	tell	the	server	what	to	do	with	certain	HTTP	requests.	If	the	URI	'/'	is	requested,	the
server	should	reply	with	a	HTTP	status	code	of	200	(Ok)	and	then	send	a	response	with	the	words	'Hello	world!'.	We	put	the	code	for
generating	a	response	in	a	separate	function,	and	the	we	tell	the	server	to	execute	it	when	'/'	is	requested,	using	the	server.on
function.

We	haven't	specified	what	the	server	should	do	if	the	client	requests	any	URI	other	than	'/'.	It	should	respond	with	an	HTTP	status	404
(Not	Found)	and	a	message	for	the	user.	We	put	this	in	a	function	as	well,	and	use	server.onNotFound	to	tell	it	that	it	should	execute	it
when	it	receives	a	request	for	a	URI	that	wasn't	specified	with	server.on	.

Then	we	start	listening	for	HTTP	requests	by	using	server.begin	.
During	the	loop,	we	constantly	check	if	a	new	HTTP	request	is	received	by	running	server.handleClient	.	If	handleClient	detects	new
requests,	it	will	automatically	execute	the	right	functions	that	we	specified	in	the	setup.

To	test	it	out,	upload	the	sketch,	open	a	new	browser	tab,	and	browse	to	http://esp8266.local.	You	should	get	a	webpage	saying		Hello	
world!	.	If	you	try	to	go	to	a	different	page,	http://esp8266.local/test,	for	instance,	you	should	get	a	404	error:	404:	Not	found	.

Turning	on	and	off	an	LED	over	Wi-Fi
We	can	use	the	web	server	to	serve	interactive	pages,	and	to	react	to	certain	POST	request.	In	the	following	example,	the	ESP8266
hosts	a	web	page	with	a	button.	When	the	button	is	pressed,	the	browser	sends	a	POST	request	to	/LED.	When	the	ESP	receives	such	a
POST	request	on	the	/LED	URI,	it	will	turn	on	or	off	the	LED,	and	then	redirect	the	browser	back	to	the	home	page	with	the	button.

In	order	to	perform	this	redirect,	the	ESP	has	to	add	a	Location	header	to	the	response,	and	use	a	303	(See	Other)	HTTP	status	code.

The	button	to	send	the	POST	request	in	the	browser	is	part	of	an	HTML	form.	You	have	to	specify	the	target	URI	to	send	the	request	to,
and	the	request	method,	in	this	case	this	is	"/LED"	and	POST	respectively.

Note	that	I	changed	the	content	type	of	the	response	from	"text/plain"	to	"text/html".	If	you	send	it	as	plain	text,	the	browser	will

display	it	as	text	instead	of	interpreting	it	as	HTML	and	showing	it	as	a	button.

#include	<ESP8266WiFi.h>
#include	<WiFiClient.h>
#include	<ESP8266WiFiMulti.h>	
#include	<ESP8266mDNS.h>
#include	<ESP8266WebServer.h>

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server(80);				//	Create	a	webserver	object	that	listens	for	HTTP	request	on	port	80

const	int	led	=	2;

void	handleRoot();														//	function	prototypes	for	HTTP	handlers
void	handleLED();
void	handleNotFound();

void	setup(void){
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		pinMode(led,	OUTPUT);

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(MDNS.begin("esp8266"))	{														//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("mDNS	responder	started");
		}	else	{
				Serial.println("Error	setting	up	MDNS	responder!");
		}

		server.on("/",	HTTP_GET,	handleRoot);					//	Call	the	'handleRoot'	function	when	a	client	requests	URI	"/"
		server.on("/LED",	HTTP_POST,	handleLED);		//	Call	the	'handleLED'	function	when	a	POST	request	is	made	to	URI	"/LED"
		server.onNotFound(handleNotFound);								//	When	a	client	requests	an	unknown	URI	(i.e.	something	other	than	"/"),	call	function	
"handleNotFound"

		server.begin();																											//	Actually	start	the	server
		Serial.println("HTTP	server	started");
}

void	loop(void){
		server.handleClient();																				//	Listen	for	HTTP	requests	from	clients
}

void	handleRoot()	{																									//	When	URI	/	is	requested,	send	a	web	page	with	a	button	to	toggle	the	LED
		server.send(200,	"text/html",	"<form	action=\"/LED\"	method=\"POST\"><input	type=\"submit\"	value=\"Toggle	LED\"></form>");
}

void	handleLED()	{																										//	If	a	POST	request	is	made	to	URI	/LED
		digitalWrite(led,!digitalRead(led));						//	Change	the	state	of	the	LED
		server.sendHeader("Location","/");								//	Add	a	header	to	respond	with	a	new	location	for	the	browser	to	go	to	the	home	page	again
		server.send(303);																									//	Send	it	back	to	the	browser	with	an	HTTP	status	303	(See	Other)	to	redirect
}

void	handleNotFound(){
		server.send(404,	"text/plain",	"404:	Not	found");	//	Send	HTTP	status	404	(Not	Found)	when	there's	no	handler	for	the	URI	in	the	
request
}

As	you	can	see,	the	server.on	function	now	takes	three	parameters:	the	URI,	the	request	method	(GET	or	POST)	and	the	function	to
execute.

Connect	an	LED	to	GPIO2,	and	upload	the	sketch.	Then	go	to	http://esp8266.local/	and	click	the	button	to	turn	the	LED	on	or	off.

You	can	open	the	developer	options	in	Chrome	(F12)	to	check	the	HTTP	request	that	are	made	when	you	click	the	button:	you'll	see
that	it	first	send	a	POST	request,	and	then	receives	a	303	(See	Other)	HTTP	status	as	a	response.	The	response	also	has	a	Location
header	containing	the	URI	"/",	so	the	browser	will	send	a	GET	request	to	the	URI	of	this	new	location:

If	you	check	the	page	source	(CTRL+U),	you	can	see	the	simple	HTML	form	that's	used:

<form	action="/LED"	method="POST">
				<input	type="submit"	value="Toggle	LED">
</form>

Sending	data	to	the	ESP	using	HTTP	POST
In	the	previous	example,	we	sent	an	empty	POST	request	to	the	ESP8266.	In	the	previous	chapter	however,	I	explained	that	it's
possible	to	send	all	kinds	of	data	in	the	body	of	the	POST	request.	

In	this	example,	I'll	show	you	how	to	send	a	username	and	a	password	to	the	ESP.	The	ESP	will	then	check	if	they	are	correct,	and
respond	to	the	request	with	the	appropriate	page.

#include	<ESP8266WiFi.h>
#include	<WiFiClient.h>
#include	<ESP8266WiFiMulti.h>	
#include	<ESP8266mDNS.h>
#include	<ESP8266WebServer.h>

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server(80);				//	Create	a	webserver	object	that	listens	for	HTTP	request	on	port	80

void	handleRoot();														//	function	prototypes	for	HTTP	handlers
void	handleLogin();
void	handleNotFound();

void	setup(void){
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());															//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");

		Serial.println(WiFi.localIP());												//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(MDNS.begin("esp8266"))	{														//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("mDNS	responder	started");
		}	else	{
				Serial.println("Error	setting	up	MDNS	responder!");
		}

		server.on("/",	HTTP_GET,	handleRoot);								//	Call	the	'handleRoot'	function	when	a	client	requests	URI	"/"
		server.on("/login",	HTTP_POST,	handleLogin);	//	Call	the	'handleLogin'	function	when	a	POST	request	is	made	to	URI	"/login"
		server.onNotFound(handleNotFound);											//	When	a	client	requests	an	unknown	URI	(i.e.	something	other	than	"/"),	call	function	
"handleNotFound"

		server.begin();																												//	Actually	start	the	server
		Serial.println("HTTP	server	started");
}

void	loop(void){
		server.handleClient();																					//	Listen	for	HTTP	requests	from	clients
}

void	handleRoot()	{																										//	When	URI	/	is	requested,	send	a	web	page	with	a	button	to	toggle	the	LED
		server.send(200,	"text/html",	"<form	action=\"/login\"	method=\"POST\"><input	type=\"text\"	name=\"username\"	
placeholder=\"Username\"></br><input	type=\"password\"	name=\"password\"	placeholder=\"Password\"></br><input	type=\"submit\"	
value=\"Login\"></form><p>Try	'John	Doe'	and	'password123'	...</p>");
}

void	handleLogin()	{																									//	If	a	POST	request	is	made	to	URI	/login
		if(!	server.hasArg("username")	||	!	server.hasArg("password")	
						||	server.arg("username")	==	NULL	||	server.arg("password")	==	NULL)	{	//	If	the	POST	request	doesn't	have	username	and	password	
data
				server.send(400,	"text/plain",	"400:	Invalid	Request");									//	The	request	is	invalid,	so	send	HTTP	status	400
				return;
		}
		if(server.arg("username")	==	"John	Doe"	&&	server.arg("password")	==	"password123")	{	//	If	both	the	username	and	the	password	are	
correct
				server.send(200,	"text/html",	"<h1>Welcome,	"	+	server.arg("username")	+	"!</h1><p>Login	successful</p>");
		}	else	{																																																																														//	Username	and	password	don't	match
				server.send(401,	"text/plain",	"401:	Unauthorized");
		}
}

void	handleNotFound(){
		server.send(404,	"text/plain",	"404:	Not	found");	//	Send	HTTP	status	404	(Not	Found)	when	there's	no	handler	for	the	URI	in	the	
request
}

The	HTML	in	handleRoot	is:

<form	action="/login"	method="POST">
				<input	type="text"	name="username"	placeholder="Username"></br>
				<input	type="password"	name="password"	placeholder="Password"></br>
				<input	type="submit"	value="Login">
</form>
<p>
				Try	'John	Doe'	and	'password123'	...
</p>

Upload	the	sketch	and	go	to	http://esp8266.local/,	then	type	'John	Doe'	into	the	username	field,	and	'password123'	into	the	password
field,	and	click	'Login'.	You	should	get	a	welcome	screen.	If	you	leave	on	or	both	of	the	fields	blank,	you	should	get	a	400	(Bad
Request)	error.	If	you	enter	a	wrong	username	or	password,	you	should	get	a	401	(Unauthorized)	error.

The	data	of	the	POST	body	can	be	accessed	using	server.arg("key")	,	and	you	can	check	if	a	specific	key	exists	using
server.hasArg("key")	.	The	key	name	on	the	ESP8266	corresponds	to	the	name	argument	in	the	HTML	form	on	the	web	page.

When	we	get	a	POST	request,	we	first	check	if	the	necessary	arguments	(username	and	password)	are	present.	If	that's	not	the	case,
we	send	a	400	(Invalid	Request)	status.
Then	we	check	if	the	credentials	match	'John	Doe'	&	'password123'.	If	that's	the	case,	we	respond	with	a	status	200	(Ok)	and	a
welcome	page.	If	the	username	and/or	password	doesn't	match,	we	send	a	401	(Unauthorized)	status.

Inline	functions
In	the	previous	examples,	we	passed	handleRoot	and	handleNotFound	to	the	server.on	function	as	a	parameter	(callback	function).	In	some
cases	however,	it's	more	readable	to	just	write	the	definition	of	the	function	inline,	like	so:

void	setup(){
		//	...
		server.onNotFound([](){
				server.send(404,	"text/plain",	"404:	Not	found");
		});
}

SPI	Flash	File	System
Up	until	now,	we've	always	included	the	HTML	for	our	web	pages	as	string	literals	in	our	sketch.	This	makes	our	code	very	hard	to
read,	and	you'll	run	out	of	memory	rather	quickly.
If	you	remember	the	introduction,	I	mentioned	the	Serial	Peripheral	Interface	Flash	File	System,	or	SPIFFS	for	short.	It's	a	light-weight
file	system	for	microcontrollers	with	an	SPI	flash	chip.	The	on-board	flash	chip	of	the	ESP8266	has	plenty	of	space	for	your	webpages,
especially	if	you	have	the	1MB,	2MB	or	4MB	version.

SPIFFS	let's	you	access	the	flash	memory	as	if	it	was	a	normal	file	system	like	the	one	on	your	computer	(but	much	simpler	of	course):
you	can	read	and	write	files,	create	folders	...

The	easiest	way	to	learn	how	to	use	SPIFFS	is	to	look	at	some	examples.	But	a	file	server	with	no	files	to	serve	is	pretty	pointless,	so	I'll
explain	how	to	upload	files	to	the	SPIFFS	first.

Uploading	files	to	SPIFFS
To	select	the	right	files	to	upload,	you	have	to	place	them	in	a	folder	called	data,	inside	the	sketch	folder	of	your	project:	Open	your
sketch	in	the	Arduino	IDE,	and	hit	CTRL+K.	Wait	for	a	file	explorer	window	to	open,	and	create	a	new	folder	named	data.	Copy	your
files	over	to	this	folder.	(Only	use	small	files	like	text	files	or	icons.	There's	not	enough	space	for	large	photos	or	videos.)
Next,	select	all	files	in	the	folder	(CTRL+A)	and	check	the	size	of	all	files	combined	(don't	forget	subfolders).	Go	to	the	Arduino	IDE
again,	and	under	Tools	>	Flash	Size,	select	an	option	with	the	right	flash	size	for	your	board,	and	a	SPIFFS	size	that	is	larger	than	the
size	of	your	data	folder.
Then	upload	the	sketch.	When	that's	finished,	make	sure	that	the	Serial	Monitor	is	closed,	then	open	the	Tools	menu,	and	click
ESP8266	sketch	data	upload.	If	your	ESP	has	auto-reset	and	auto-program,	it	should	work	automatically,	if	you	don't	have	auto-
program,	you	have	to	manually	enter	program	mode	before	uploading	the	data	to	SPIFFS.	The	procedure	is	exactly	the	same	as
entering	program	mode	before	uploading	a	sketch.

If	you	get	an	error	saying		SPIFFS_write	error(-10001):	File	system	is	full	,	this	means	that	your	files	are	too	large	to	fit	into	the	SPIFFS
memory.	Select	a	larger	SPIFFS	size	under	Tools	>	Flash	Size,	or	delete	some	files.	
Even	if	your	computer	says	that	the	files	are	smaller	than	the	selected	SPIFFS	size,	you	can	still	get	this	error:	this	has	to	do	with	block
sizes,	and	metadata	like	file	and	folder	names	that	take	up	space	as	well.

If	you	change	the	SPIFFS	size,	you	have	to	reupload	your	sketch,	because	when	you	change	the	SPIFFS	size,	the	memory	location	will
be	different.	The	program	has	to	know	the	updated	SPIFFS	address	offset	to	be	able	to	read	the	files.

SPIFFS	File	Server

The	following	example	is	a	very	basic	file	server:	it	just	takes	the	URI	of	the	HTTP	request,	checks	if	the	URI	points	to	a	file	in	the
SPIFFS,	and	if	it	finds	the	file,	it	sends	it	as	a	response.

#include	<ESP8266WiFi.h>
#include	<WiFiClient.h>
#include	<ESP8266WiFiMulti.h>
#include	<ESP8266mDNS.h>
#include	<ESP8266WebServer.h>
#include	<FS.h>			//	Include	the	SPIFFS	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server(80);				//	Create	a	webserver	object	that	listens	for	HTTP	request	on	port	80

String	getContentType(String	filename);	//	convert	the	file	extension	to	the	MIME	type
bool	handleFileRead(String	path);							//	send	the	right	file	to	the	client	(if	it	exists)

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(MDNS.begin("esp8266"))	{														//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("mDNS	responder	started");
		}	else	{
				Serial.println("Error	setting	up	MDNS	responder!");
		}

		SPIFFS.begin();																											//	Start	the	SPI	Flash	Files	System
		
		server.onNotFound([]()	{																														//	If	the	client	requests	any	URI
				if	(!handleFileRead(server.uri()))																		//	send	it	if	it	exists
						server.send(404,	"text/plain",	"404:	Not	Found");	//	otherwise,	respond	with	a	404	(Not	Found)	error
		});

		server.begin();																											//	Actually	start	the	server
		Serial.println("HTTP	server	started");
}

void	loop(void)	{
		server.handleClient();
}

String	getContentType(String	filename)	{	//	convert	the	file	extension	to	the	MIME	type
		if	(filename.endsWith(".html"))	return	"text/html";
		else	if	(filename.endsWith(".css"))	return	"text/css";
		else	if	(filename.endsWith(".js"))	return	"application/javascript";
		else	if	(filename.endsWith(".ico"))	return	"image/x-icon";
		return	"text/plain";
}

bool	handleFileRead(String	path)	{	//	send	the	right	file	to	the	client	(if	it	exists)
		Serial.println("handleFileRead:	"	+	path);
		if	(path.endsWith("/"))	path	+=	"index.html";									//	If	a	folder	is	requested,	send	the	index	file
		String	contentType	=	getContentType(path);												//	Get	the	MIME	type
		if	(SPIFFS.exists(path))	{																												//	If	the	file	exists
				File	file	=	SPIFFS.open(path,	"r");																	//	Open	it
				size_t	sent	=	server.streamFile(file,	contentType);	//	And	send	it	to	the	client
				file.close();																																							//	Then	close	the	file	again
				return	true;
		}
		Serial.println("\tFile	Not	Found");
		return	false;																																									//	If	the	file	doesn't	exist,	return	false
}

As	you	can	see,	we	don't	use	server.on	in	this	example.	Instead,	we	use	server.onNotFound	:	this	will	match	any	URI,	since	we	didn't
declare	any	specific	URI	handlers	like	in	the	previous	server	examples.
When	a	URI	is	requested,	we	call	the	function	handleFileRead	.	This	function	checks	if	the	URI	of	the	HTTP	request	is	the	path	to	an
existing	file	in	the	SPIFFS.	If	that's	the	case,	it	sends	the	file	back	to	the	client.	If	the	path	doesn't	exist,	it	returns	false,	and	a	404	(Not
Found)	HTTP	status	will	be	sent.

The	MIME	type	for	the	different	files	is	based	on	the	file	extension.
You	could	add	other	file	types	as	well.	For	instance:

String	getContentType(String	filename){
		if(filename.endsWith(".htm"))	return	"text/html";
		else	if(filename.endsWith(".html"))	return	"text/html";
		else	if(filename.endsWith(".css"))	return	"text/css";
		else	if(filename.endsWith(".js"))	return	"application/javascript";
		else	if(filename.endsWith(".png"))	return	"image/png";
		else	if(filename.endsWith(".gif"))	return	"image/gif";
		else	if(filename.endsWith(".jpg"))	return	"image/jpeg";
		else	if(filename.endsWith(".ico"))	return	"image/x-icon";
		else	if(filename.endsWith(".xml"))	return	"text/xml";
		else	if(filename.endsWith(".pdf"))	return	"application/x-pdf";
		else	if(filename.endsWith(".zip"))	return	"application/x-zip";
		else	if(filename.endsWith(".gz"))	return	"application/x-gzip";
		return	"text/plain";
}

This	example	is	adapted	from	the	FSBrowser	example	by	Hristo	Gochkov.

Compressing	files
The	ESP8266's	flash	memory	isn't	huge,	and	most	text	files,	like	html,	css	etc.	can	be	compressed	by	quite	a	large	factor.	Modern	web
browsers	accept	compressed	files	as	a	response,	so	we'll	take	advantage	of	this	by	uploading	compressed	versions	of	our	html	and
icon	files	to	the	SPIFFS,	in	order	to	save	space	and	bandwidth.

To	do	this,	we	need	to	add	the	GNU	zip	file	type	to	our	list	of	MIME	types:

String	getContentType(String	filename){
		if(filename.endsWith(".html"))	return	"text/html";
		else	if(filename.endsWith(".css"))	return	"text/css";
		else	if(filename.endsWith(".js"))	return	"application/javascript";
		else	if(filename.endsWith(".ico"))	return	"image/x-icon";
		else	if(filename.endsWith(".gz"))	return	"application/x-gzip";
		return	"text/plain";
}

And	we	need	to	change	our		handleFileRead		function	as	well:

bool	handleFileRead(String	path){		//	send	the	right	file	to	the	client	(if	it	exists)
		Serial.println("handleFileRead:	"	+	path);
		if(path.endsWith("/"))	path	+=	"index.html";											//	If	a	folder	is	requested,	send	the	index	file
		String	contentType	=	getContentType(path);													//	Get	the	MIME	type
		String	pathWithGz	=	path	+	".gz";
		if(SPIFFS.exists(pathWithGz)	||	SPIFFS.exists(path)){		//	If	the	file	exists,	either	as	a	compressed	archive,	or	normal
				if(SPIFFS.exists(pathWithGz))																										//	If	there's	a	compressed	version	available
						path	+=	".gz";																																									//	Use	the	compressed	version
				File	file	=	SPIFFS.open(path,	"r");																				//	Open	the	file
				size_t	sent	=	server.streamFile(file,	contentType);				//	Send	it	to	the	client
				file.close();																																										//	Close	the	file	again
				Serial.println(String("\tSent	file:	")	+	path);
				return	true;
		}
		Serial.println(String("\tFile	Not	Found:	")	+	path);
		return	false;																																										//	If	the	file	doesn't	exist,	return	false
}

Now,	try	compressing	some	of	the	files	to	the	GNU	zip	format	(.gz),	and	uploading	them	to	SPIFFS.	Or	you	can	just	download	the	new
data	folder	(unzip	it	first).
Every	time	a	client	requests	a	certain	file,	the	ESP	will	check	if	a	compressed	version	is	available.	If	so,	it	will	use	that	instead	of	the
uncompressed	file.	The	output	in	the	Serial	Monitor	should	look	something	like	this:

handleFileRead:	/
	 Sent	file:	/index.html.gz
handleFileRead:	/main.css
	 Sent	file:	/main.css
handleFileRead:	/JavaScript.js
	 Sent	file:	/JavaScript.js
handleFileRead:	/folder/JavaScript.js
	 Sent	file:	/folder/JavaScript.js
handleFileRead:	/favicon.ico
	 Sent	file:	/favicon.ico.gz

	It	automatically	detected	that	it	had	to	send	the	compressed	versions	of	index.html	and	favicon.ico.

Uploading	files	to	the	server
There	are	scenarios	where	you	may	want	to	upload	new	files	to	the	server	from	within	a	browser,	without	having	to	connect	to	the
ESP8266	over	USB	in	order	to	flash	a	new	SPIFFS	image.
In	this	chapter,	I'll	show	you	how	to	use	HTML	forms	and	POST	requests	to	upload	or	edit	files	to	our	little	ESP	server.

Client:	HTML	form
The	easiest	way	to	upload	files	is	by	using	an	HTML	form,	just	like	in	the	first	server	examples,	where	we	used	forms	to	turn	on/off
LEDs,	and	to	send	the	login	credentials	back	to	the	server.	If	you	choose	a	file	input,	you	automatically	get	a	file	picker,	and	the
browser	will	send	the	right	POST	request	to	the	server,	with	the	file	attached.

<form	method="post"	enctype="multipart/form-data">
				<input	type="file"	name="name">
				<input	class="button"	type="submit"	value="Upload">
</form>

Server

In	the	ESP	code,	we	have	to	add	a	handler	to	our	server	that	handles	POST	requests	to	the	/upload	URI.	When	it	receives	a	POST
request,	it	sends	a	status	200	(OK)	back	to	the	client	to	start	receiving	the	file,	and	then	write	it	to	the	SPIFFS.	When	the	file	is
uploaded	successfully,	it	redirects	the	client	to	a	success	page.
The	relevant	new	code	is	found	in	the	setup	and	the	handleFileUpload	function.

#include	<ESP8266WiFi.h>
#include	<WiFiClient.h>
#include	<ESP8266WiFiMulti.h>
#include	<ESP8266mDNS.h>
#include	<ESP8266WebServer.h>
#include	<FS.h>			//	Include	the	SPIFFS	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server(80);				//	Create	a	webserver	object	that	listens	for	HTTP	request	on	port	80

File	fsUploadFile;														//	a	File	object	to	temporarily	store	the	received	file

String	getContentType(String	filename);	//	convert	the	file	extension	to	the	MIME	type
bool	handleFileRead(String	path);							//	send	the	right	file	to	the	client	(if	it	exists)
void	handleFileUpload();																//	upload	a	new	file	to	the	SPIFFS

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect
				delay(1000);
				Serial.print(++i);	Serial.print('	');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer

		if	(!MDNS.begin("esp8266"))	{													//	Start	the	mDNS	responder	for	esp8266.local
				Serial.println("Error	setting	up	MDNS	responder!");
		}
		Serial.println("mDNS	responder	started");

		SPIFFS.begin();																											//	Start	the	SPI	Flash	Files	System

		server.on("/upload",	HTTP_GET,	[]()	{																	//	if	the	client	requests	the	upload	page
				if	(!handleFileRead("/upload.html"))																//	send	it	if	it	exists
						server.send(404,	"text/plain",	"404:	Not	Found");	//	otherwise,	respond	with	a	404	(Not	Found)	error
		});

		server.on("/upload",	HTTP_POST,																							//	if	the	client	posts	to	the	upload	page
				[](){	server.send(200);	},																										//	Send	status	200	(OK)	to	tell	the	client	we	are	ready	to	receive
				handleFileUpload																																				//	Receive	and	save	the	file
);

		server.onNotFound([]()	{																														//	If	the	client	requests	any	URI
				if	(!handleFileRead(server.uri()))																		//	send	it	if	it	exists
						server.send(404,	"text/plain",	"404:	Not	Found");	//	otherwise,	respond	with	a	404	(Not	Found)	error
		});

		server.begin();																											//	Actually	start	the	server
		Serial.println("HTTP	server	started");
}

void	loop()	{
		server.handleClient();
}

String	getContentType(String	filename)	{	//	convert	the	file	extension	to	the	MIME	type
		if	(filename.endsWith(".html"))	return	"text/html";
		else	if	(filename.endsWith(".css"))	return	"text/css";
		else	if	(filename.endsWith(".js"))	return	"application/javascript";
		else	if	(filename.endsWith(".ico"))	return	"image/x-icon";
		else	if	(filename.endsWith(".gz"))	return	"application/x-gzip";
		return	"text/plain";
}

bool	handleFileRead(String	path)	{	//	send	the	right	file	to	the	client	(if	it	exists)
		Serial.println("handleFileRead:	"	+	path);
		if	(path.endsWith("/"))	path	+=	"index.html";										//	If	a	folder	is	requested,	send	the	index	file
		String	contentType	=	getContentType(path);													//	Get	the	MIME	type
		String	pathWithGz	=	path	+	".gz";
		if	(SPIFFS.exists(pathWithGz)	||	SPIFFS.exists(path))	{	//	If	the	file	exists,	either	as	a	compressed	archive,	or	normal
				if	(SPIFFS.exists(pathWithGz))																									//	If	there's	a	compressed	version	available
						path	+=	".gz";																																									//	Use	the	compressed	verion
				File	file	=	SPIFFS.open(path,	"r");																				//	Open	the	file
				size_t	sent	=	server.streamFile(file,	contentType);				//	Send	it	to	the	client
				file.close();																																										//	Close	the	file	again
				Serial.println(String("\tSent	file:	")	+	path);
				return	true;
		}
		Serial.println(String("\tFile	Not	Found:	")	+	path);			//	If	the	file	doesn't	exist,	return	false
		return	false;
}

void	handleFileUpload(){	//	upload	a	new	file	to	the	SPIFFS
		HTTPUpload&	upload	=	server.upload();
		if(upload.status	==	UPLOAD_FILE_START){
				String	filename	=	upload.filename;
				if(!filename.startsWith("/"))	filename	=	"/"+filename;
				Serial.print("handleFileUpload	Name:	");	Serial.println(filename);
				fsUploadFile	=	SPIFFS.open(filename,	"w");												//	Open	the	file	for	writing	in	SPIFFS	(create	if	it	doesn't	exist)
				filename	=	String();
		}	else	if(upload.status	==	UPLOAD_FILE_WRITE){
				if(fsUploadFile)
						fsUploadFile.write(upload.buf,	upload.currentSize);	//	Write	the	received	bytes	to	the	file
		}	else	if(upload.status	==	UPLOAD_FILE_END){
				if(fsUploadFile)	{																																				//	If	the	file	was	successfully	created
						fsUploadFile.close();																															//	Close	the	file	again
						Serial.print("handleFileUpload	Size:	");	Serial.println(upload.totalSize);
						server.sendHeader("Location","/success.html");						//	Redirect	the	client	to	the	success	page
						server.send(303);
				}	else	{
						server.send(500,	"text/plain",	"500:	couldn't	create	file");
				}
		}
}

The	handleFileUpload	function	just	writes	the	file	attached	to	the	POST	request	to	SPIFFS.

If	you	wan	to	use	other	file	types	as	well,	you	can	just	add	them	to	the		getContentType		function.

Uploading	files
To	upload	a	new	file	to	the	ESP,	or	to	update	an	existing	file,	just	go	to	http://esp8266.local/upload,	click	the	Choose	File	button,	select
the	file	you	wish	to	upload,	and	click	Upload.	You	can	now	enter	the	URL	into	the	URL	bar,	and	open	the	new	file.

A	note	on	safety

This	example	isn't	very	secure	(obviously).	Everyone	that	can	connect	to	the	ESP	can	upload	new	files,	or	edit	the	existing	files	and
insert	XSS	code,	for	example.	There's	also	not	a	lot	of	error	checking/handling,	like	checking	if	there's	enough	space	in	the	SPIFFS	to
upload	a	new	file,	etc.	

Advanced	example
The	code	for	these	SPIFFS	server	examples	comes	(for	the	most	part)	from	an	example	written	by	Hristo	Gochkov.	You	can	find	it	under
File	>	Examples	>	ESP8266WebServer	>	FSBrowser.	It	has	a	web	interface	for	browsing	and	editing	files	in	your	browser,	and	has
some	other	nice	features	as	well.

Over	The	Air	Updates
Uploading	over	Serial	is	fine	during	development,	when	you	have	access	to	the	Serial	pins	and	the	USB	port.	But	once	your	project	is
finished,	and	you	put	it	inside	an	enclosure,	it	not	that	easy	to	upload	updates	with	bug	fixes	or	new	features.
A	solution	to	this	problem	is	Over	The	Air	updating,	or	OTA	for	short.	As	the	name	implies,	this	technology	allows	you	to	upload	new
code	over	Wi-Fi,	instead	of	Serial.
The	only	disadvantage	is	that	you	have	to	explicitly	add	the	code	for	it	to	every	sketch	you	upload.	You	also	need	a	flash	chip	that	is
twice	the	size	of	your	sketch,	so	it	won't	work	for	512kB	boards.	(It	has	to	download	the	new	sketch	while	still	running	the	old	code.)
Let's	take	a	look	at	an	example	...

Blink	OTA
The	following	example	is	basically	Blink	Without	Delay,	but	with	the	necessary	OTA	and	Wi-Fi	code	added	as	well.

#include	<ESP8266WiFi.h>
#include	<ESP8266WiFiMulti.h>
#include	<ArduinoOTA.h>

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

const	byte	led	=	13;

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer
		
		ArduinoOTA.setHostname("ESP8266");
		ArduinoOTA.setPassword("esp8266");

		ArduinoOTA.onStart([]()	{
				Serial.println("Start");
		});
		ArduinoOTA.onEnd([]()	{
				Serial.println("\nEnd");
		});
		ArduinoOTA.onProgress([](unsigned	int	progress,	unsigned	int	total)	{
				Serial.printf("Progress:	%u%%\r",	(progress	/	(total	/	100)));
		});
		ArduinoOTA.onError([](ota_error_t	error)	{
				Serial.printf("Error[%u]:	",	error);
				if	(error	==	OTA_AUTH_ERROR)	Serial.println("Auth	Failed");
				else	if	(error	==	OTA_BEGIN_ERROR)	Serial.println("Begin	Failed");
				else	if	(error	==	OTA_CONNECT_ERROR)	Serial.println("Connect	Failed");
				else	if	(error	==	OTA_RECEIVE_ERROR)	Serial.println("Receive	Failed");
				else	if	(error	==	OTA_END_ERROR)	Serial.println("End	Failed");
		});
		ArduinoOTA.begin();
		Serial.println("OTA	ready");

		pinMode(led,	OUTPUT);
		digitalWrite(led,	1);
}

unsigned	long	previousTime	=	millis();

const	unsigned	long	interval	=	1000;

void	loop()	{
		ArduinoOTA.handle();
		unsigned	long	diff	=	millis()	-	previousTime;
		if(diff	>	interval)	{
				digitalWrite(led,	!digitalRead(led));		//	Change	the	state	of	the	LED
				previousTime	+=	diff;
		}
}

Add	your	Wi-Fi	credentials,	and	upload	the	sketch	over	Serial.	Connect	an	LED	(+	resistor)	to	pin	13.	Then	restart	the	IDE	(you	have	to
close	all	windows).	Go	to	Tools	>	Port,	and	you	should	get	a	new	option:	Network	Ports:	ESP8266	at	192.168.1.x.	Select	it.

Next,	change	the	interval	on	line	59	from	1000	to	500	milliseconds,	and	click	upload.	You	should	get	a	password	prompt:	enter
"esp8266".	This	password	is	set	on	line	31,	so	you	can	change	it	if	you	want	to.	You	can	also	delete	line	31	altogether	to	use	it	without
a	password,	but	it's	not	recommended	-	for	obvious	security	reasons.

The	sketch	should	upload	just	fine,	and	once	the	ESP	has	reset	itself,	the	LED	should	blink	twice	as	fast.

Once	in	a	while,	you	might	get	an	error	saying		[ERROR]:	No	Answer	.	If	this	happens,	just	enter	the	password,	and	try	again.

Serial	Monitor	OTA
Using	the	Serial	Monitor	over	Wi-Fi	is	not	possible	(yet?).	When	you	try	to	open	it,	you'll	be	prompted	a	password,	entering	the
password	won't	work,	because	there	is	no	SSH	support	to	access	the	ESP's	console.

You	can	use	a	different	program	to	get	debug	output	from	the	physical	Serial	port.	On	Windows,	you	can	try	Portmon.	On	Linux,	you
can	try	GTKTerm	(sudo	apt-get	install	gtkterm)	or	Screen	(sudo	apt-get	install	screen	to	install,	and	screen	/dev/ttyUSB0	115200	or	screen	
/dev/ttyACM0	115200	to	run;	CTRL+A,	CTRL+D	to	exit).

WebSocket	communication
Up	until	now,	we've	always	used	links	(GET)	and	HTML	forms	(POST)	to	get	data	from	the	ESP,	or	to	send	data	to	it.	This	always
resulted	in	a	browser	navigation	action.	There	are	many	situations	where	you	want	to	send	data	to	the	ESP	without	refreshing	the
page.	

One	way	to	do	this	is	by	using	AJAX	and	XMLHTTP	requests.	The	disadvantage	is	that	you	have	to	establish	a	new	TCP	connection	for
every	message	you	send.	This	adds	a	load	of	latency.
WebSocket	is	a	technology	that	keeps	the	TCP	connection	open,	so	you	can	constantly	send	data	back	and	forth	between	the	ESP	and
the	client,	with	low	latency.	And	since	it's	TCP,	you're	sure	that	the	packets	will	arrive	intact.	

Controlling	RGB	LEDs	from	a	web	interface	using	WebSocket
To	learn	how	to	use	WebSockets,	I	created	this	comprehensive	example,	it	uses	pretty	much	everything	we've	covered	so	far.

The	ESP	hosts	a	webpage	with	three	sliders	to	set	the	red,	green	and	blue	levels	of	an	RGB	LED	(or	LED	strip).	There's	also	a	button	to
turn	on	a	rainbow	effect	that	cycles	through	the	entire	color	wheel.	Color	data	is	transmitted	from	the	browser	to	the	ESP	via	a
WebSocket	connection.	
You	can	connect	to	the	ESP	directly,	using	it	as	an	AP,	or	let	the	ESP	connect	to	a	different	AP.	You	can	use	mDNS	to	open	the
webpage,	by	browsing	to	http://esp8266.local.
All	files	are	stored	in	the	ESP's	SPIFFS,	and	you	can	upload	new	files,	or	update	files	via	a	web	interface.	
You	can	also	use	the	OTA	service	to	upload	new	firmware	(sketches)	over	Wi-Fi.

Improving	readability

When	dealing	with	large	and	complicated	programs,	it's	a	good	idea	to	make	abstraction	of	some	things,	and	create	functions	with	a
descriptive	name	instead	of	endless	lines	of	meaningless	code.	

Even	if	you	have	lots	of	comments	in	your	code,	it'll	be	very	hard	to	preserve	an	overview.	Using	functions	will	greatly	improve	the
readability	of	your	code.
So	just	split	up	the	code	into	different	parts	and	move	all	pieces	to	functions	at	the	bottom	of	your	sketch,	or	even	to	different	files.	

In	the	following	example,	the	setup	was	very	long	and	cluttered,	so	I	split	it	up	into	several	different	functions:	one	to	connect	to	the
Wi-Fi,	one	to	start	the	OTA	update	service,	one	to	start	the	SPIFFS	...	and	so	on.	

Downloading	WebSockets	for	Arduino

We'll	be	using	the	arduinoWebSockets	library	by	Links2004.	Download	it	from	GitHub	and	install	it.	(Sketch	>	Include	Library	>	Add
.ZIP	Library...)

Libraries,	constants	and	globals

At	the	top	of	the	sketch	we'll	include	the	necessary	libraries,	create	some	global	server	and	file	objects	like	in	the	previous	examples,
and	some	constants	for	the	host	name,	AP	ssid,	passwords,	LED	pins	...

#include	<ESP8266WiFi.h>
#include	<ESP8266WiFiMulti.h>
#include	<ArduinoOTA.h>
#include	<ESP8266WebServer.h>
#include	<ESP8266mDNS.h>
#include	<FS.h>
#include	<WebSocketsServer.h>

ESP8266WiFiMulti	wifiMulti;							//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

ESP8266WebServer	server	=	ESP8266WebServer(80);							//	create	a	web	server	on	port	80
WebSocketsServer	webSocket	=	WebSocketsServer(81);				//	create	a	websocket	server	on	port	81

File	fsUploadFile;																																				//	a	File	variable	to	temporarily	store	the	received	file

const	char	*ssid	=	"ESP8266	Access	Point";	//	The	name	of	the	Wi-Fi	network	that	will	be	created
const	char	*password	=	"thereisnospoon";			//	The	password	required	to	connect	to	it,	leave	blank	for	an	open	network

const	char	*OTAName	=	"ESP8266";											//	A	name	and	a	password	for	the	OTA	service
const	char	*OTAPassword	=	"esp8266";

#define	LED_RED					15												//	specify	the	pins	with	an	RGB	LED	connected
#define	LED_GREEN			12
#define	LED_BLUE				13

const	char*	mdnsName	=	"esp8266";	//	Domain	name	for	the	mDNS	responder

You	should	already	be	familiar	with	most	of	this	code.	The	only	new	part	is	the	WebSocket	server	library	that	is	included,	and	the
WebSocket	server	object,	but	this	shouldn't	be	a	problem.

Setup

void	setup()	{
		pinMode(LED_RED,	OUTPUT);				//	the	pins	with	LEDs	connected	are	outputs
		pinMode(LED_GREEN,	OUTPUT);
		pinMode(LED_BLUE,	OUTPUT);

		Serial.begin(115200);								//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println("\r\n");

		startWiFi();																	//	Start	a	Wi-Fi	access	point,	and	try	to	connect	to	some	given	access	points.	Then	wait	for	either	an	
AP	or	STA	connection
		
		startOTA();																		//	Start	the	OTA	service
		

		startSPIFFS();															//	Start	the	SPIFFS	and	list	all	contents

		startWebSocket();												//	Start	a	WebSocket	server
		
		startMDNS();																	//	Start	the	mDNS	responder

		startServer();															//	Start	a	HTTP	server	with	a	file	read	handler	and	an	upload	handler
		
}

As	you	can	see,	the	setup	is	now	much	more	condensed	and	gives	a	much	better	overview	of	what	it's	doing.	To	understand	the
program,	you	don't	have	to	know	each	individual	step	that	is	required	to	connect	to	a	Wi-Fi	network,	it's	enough	to	know	that	it	will
connect	to	a	Wi-Fi	network,	because	that's	what	the	startWiFi	function	does.

Loop

bool	rainbow	=	false;													//	The	rainbow	effect	is	turned	off	on	startup

unsigned	long	prevMillis	=	millis();
int	hue	=	0;

void	loop()	{
		webSocket.loop();																											//	constantly	check	for	websocket	events
		server.handleClient();																						//	run	the	server
		ArduinoOTA.handle();																								//	listen	for	OTA	events

		if(rainbow)	{																															//	if	the	rainbow	effect	is	turned	on
				if(millis()	>	prevMillis	+	32)	{										
						if(++hue	==	360)																								//	Cycle	through	the	color	wheel	(increment	by	one	degree	every	32	ms)
								hue	=	0;
						setHue(hue);																												//	Set	the	RGB	LED	to	the	right	color
						prevMillis	=	millis();
				}
		}
}

Same	goes	for	the	loop:	most	of	the	work	is	done	by	the	first	three	functions	that	handle	the	WebSocket	communication,	HTTP
requests	and	OTA	updates.	When	such	an	event	happens,	the	appropriate	handler	functions	will	be	executed.	These	are	defined
elsewhere.

The	second	part	is	the	rainbow	effect.	If	it	is	turned	on,	it	cycles	through	the	color	wheel	and	sets	the	color	to	the	RGB	LED.	
If	you	don't	understand	why	I	use	millis(),	you	can	take	a	look	at	the	Blink	Without	Delay	example.

Setup	functions

void	startWiFi()	{	//	Start	a	Wi-Fi	access	point,	and	try	to	connect	to	some	given	access	points.	Then	wait	for	either	an	AP	or	STA	
connection
		WiFi.softAP(ssid,	password);													//	Start	the	access	point
		Serial.print("Access	Point	\"");
		Serial.print(ssid);
		Serial.println("\"	started\r\n");

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting");
		while	(wifiMulti.run()	!=	WL_CONNECTED	&&	WiFi.softAPgetStationNum()	<	1)	{		//	Wait	for	the	Wi-Fi	to	connect
				delay(250);
				Serial.print('.');
		}
		Serial.println("\r\n");
		if(WiFi.softAPgetStationNum()	==	0)	{						//	If	the	ESP	is	connected	to	an	AP
				Serial.print("Connected	to	");
				Serial.println(WiFi.SSID());													//	Tell	us	what	network	we're	connected	to
				Serial.print("IP	address:\t");
				Serial.print(WiFi.localIP());												//	Send	the	IP	address	of	the	ESP8266	to	the	computer
		}	else	{																																			//	If	a	station	is	connected	to	the	ESP	SoftAP
				Serial.print("Station	connected	to	ESP8266	AP");
		}
		Serial.println("\r\n");
}

void	startOTA()	{	//	Start	the	OTA	service
		ArduinoOTA.setHostname(OTAName);
		ArduinoOTA.setPassword(OTAPassword);

		ArduinoOTA.onStart([]()	{
				Serial.println("Start");
				digitalWrite(LED_RED,	0);				//	turn	off	the	LEDs
				digitalWrite(LED_GREEN,	0);
				digitalWrite(LED_BLUE,	0);
		});
		ArduinoOTA.onEnd([]()	{
				Serial.println("\r\nEnd");
		});
		ArduinoOTA.onProgress([](unsigned	int	progress,	unsigned	int	total)	{
				Serial.printf("Progress:	%u%%\r",	(progress	/	(total	/	100)));
		});
		ArduinoOTA.onError([](ota_error_t	error)	{
				Serial.printf("Error[%u]:	",	error);
				if	(error	==	OTA_AUTH_ERROR)	Serial.println("Auth	Failed");
				else	if	(error	==	OTA_BEGIN_ERROR)	Serial.println("Begin	Failed");
				else	if	(error	==	OTA_CONNECT_ERROR)	Serial.println("Connect	Failed");
				else	if	(error	==	OTA_RECEIVE_ERROR)	Serial.println("Receive	Failed");
				else	if	(error	==	OTA_END_ERROR)	Serial.println("End	Failed");
		});
		ArduinoOTA.begin();
		Serial.println("OTA	ready\r\n");
}

void	startSPIFFS()	{	//	Start	the	SPIFFS	and	list	all	contents
		SPIFFS.begin();																													//	Start	the	SPI	Flash	File	System	(SPIFFS)
		Serial.println("SPIFFS	started.	Contents:");
		{
				Dir	dir	=	SPIFFS.openDir("/");

				while	(dir.next())	{																						//	List	the	file	system	contents
						String	fileName	=	dir.fileName();
						size_t	fileSize	=	dir.fileSize();
						Serial.printf("\tFS	File:	%s,	size:	%s\r\n",	fileName.c_str(),	formatBytes(fileSize).c_str());
				}
				Serial.printf("\n");
		}
}

void	startWebSocket()	{	//	Start	a	WebSocket	server
		webSocket.begin();																										//	start	the	websocket	server
		webSocket.onEvent(webSocketEvent);										//	if	there's	an	incomming	websocket	message,	go	to	function	'webSocketEvent'
		Serial.println("WebSocket	server	started.");
}

void	startMDNS()	{	//	Start	the	mDNS	responder
		MDNS.begin(mdnsName);																								//	start	the	multicast	domain	name	server
		Serial.print("mDNS	responder	started:	http://");
		Serial.print(mdnsName);
		Serial.println(".local");
}

void	startServer()	{	//	Start	a	HTTP	server	with	a	file	read	handler	and	an	upload	handler
		server.on("/edit.html",		HTTP_POST,	[]()	{		//	If	a	POST	request	is	sent	to	the	/edit.html	address,
				server.send(200,	"text/plain",	"");	
		},	handleFileUpload);																							//	go	to	'handleFileUpload'

		server.onNotFound(handleNotFound);										//	if	someone	requests	any	other	file	or	page,	go	to	function	'handleNotFound'
																																														//	and	check	if	the	file	exists

		server.begin();																													//	start	the	HTTP	server
		Serial.println("HTTP	server	started.");
}

These	are	the	function	definitions	of	the	functions	used	in	the	setup.	Nothing	new	here,	apart	from	the	startWebSocket	function.	You
just	have	to	start	the	WebSocket	server	using	the	begin	method,	and	then	give	it	a	callback	function	that	is	executed	when	the	ESP
receives	a	WebSocket	message.

Server	handlers

This	is	the	code	that	is	executed	on	certain	server-related	events,	like	when	an	HTTP	request	is	received,	when	a	file	is	being
uploaded,	when	there's	an	incoming	WebSocket	message	...	etc.	

void	handleNotFound(){	//	if	the	requested	file	or	page	doesn't	exist,	return	a	404	not	found	error
		if(!handleFileRead(server.uri())){										//	check	if	the	file	exists	in	the	flash	memory	(SPIFFS),	if	so,	send	it
				server.send(404,	"text/plain",	"404:	File	Not	Found");
		}
}

bool	handleFileRead(String	path)	{	//	send	the	right	file	to	the	client	(if	it	exists)
		Serial.println("handleFileRead:	"	+	path);
		if	(path.endsWith("/"))	path	+=	"index.html";										//	If	a	folder	is	requested,	send	the	index	file
		String	contentType	=	getContentType(path);													//	Get	the	MIME	type
		String	pathWithGz	=	path	+	".gz";
		if	(SPIFFS.exists(pathWithGz)	||	SPIFFS.exists(path))	{	//	If	the	file	exists,	either	as	a	compressed	archive,	or	normal
				if	(SPIFFS.exists(pathWithGz))																									//	If	there's	a	compressed	version	available
						path	+=	".gz";																																									//	Use	the	compressed	verion
				File	file	=	SPIFFS.open(path,	"r");																				//	Open	the	file
				size_t	sent	=	server.streamFile(file,	contentType);				//	Send	it	to	the	client
				file.close();																																										//	Close	the	file	again
				Serial.println(String("\tSent	file:	")	+	path);
				return	true;
		}
		Serial.println(String("\tFile	Not	Found:	")	+	path);			//	If	the	file	doesn't	exist,	return	false
		return	false;
}

void	handleFileUpload(){	//	upload	a	new	file	to	the	SPIFFS
		HTTPUpload&	upload	=	server.upload();
		String	path;
		if(upload.status	==	UPLOAD_FILE_START){
				path	=	upload.filename;
				if(!path.startsWith("/"))	path	=	"/"+path;
				if(!path.endsWith(".gz"))	{																										//	The	file	server	always	prefers	a	compressed	version	of	a	file	
						String	pathWithGz	=	path+".gz";																				//	So	if	an	uploaded	file	is	not	compressed,	the	existing	compressed
						if(SPIFFS.exists(pathWithGz))																						//	version	of	that	file	must	be	deleted	(if	it	exists)
									SPIFFS.remove(pathWithGz);
				}
				Serial.print("handleFileUpload	Name:	");	Serial.println(path);
				fsUploadFile	=	SPIFFS.open(path,	"w");												//	Open	the	file	for	writing	in	SPIFFS	(create	if	it	doesn't	exist)
				path	=	String();
		}	else	if(upload.status	==	UPLOAD_FILE_WRITE){
				if(fsUploadFile)
						fsUploadFile.write(upload.buf,	upload.currentSize);	//	Write	the	received	bytes	to	the	file
		}	else	if(upload.status	==	UPLOAD_FILE_END){
				if(fsUploadFile)	{																																				//	If	the	file	was	successfully	created
						fsUploadFile.close();																															//	Close	the	file	again
						Serial.print("handleFileUpload	Size:	");	Serial.println(upload.totalSize);
						server.sendHeader("Location","/success.html");						//	Redirect	the	client	to	the	success	page
						server.send(303);
				}	else	{
						server.send(500,	"text/plain",	"500:	couldn't	create	file");
				}
		}
}

void	webSocketEvent(uint8_t	num,	WStype_t	type,	uint8_t	*	payload,	size_t	lenght)	{	//	When	a	WebSocket	message	is	received
		switch	(type)	{
				case	WStype_DISCONNECTED:													//	if	the	websocket	is	disconnected
						Serial.printf("[%u]	Disconnected!\n",	num);
						break;
				case	WStype_CONNECTED:	{														//	if	a	new	websocket	connection	is	established
								IPAddress	ip	=	webSocket.remoteIP(num);
								Serial.printf("[%u]	Connected	from	%d.%d.%d.%d	url:	%s\n",	num,	ip[0],	ip[1],	ip[2],	ip[3],	payload);
								rainbow	=	false;																		//	Turn	rainbow	off	when	a	new	connection	is	established
						}
						break;
				case	WStype_TEXT:																					//	if	new	text	data	is	received
						Serial.printf("[%u]	get	Text:	%s\n",	num,	payload);
						if	(payload[0]	==	'#')	{												//	we	get	RGB	data

								uint32_t	rgb	=	(uint32_t)	strtol((const	char	*)	&payload[1],	NULL,	16);			//	decode	rgb	data
								int	r	=	((rgb	>>	20)	&	0x3FF);																					//	10	bits	per	color,	so	R:	bits	20-29
								int	g	=	((rgb	>>	10)	&	0x3FF);																					//	G:	bits	10-19
								int	b	=										rgb	&	0x3FF;																						//	B:	bits		0-9

								analogWrite(LED_RED,			r);																									//	write	it	to	the	LED	output	pins
								analogWrite(LED_GREEN,	g);
								analogWrite(LED_BLUE,		b);
						}	else	if	(payload[0]	==	'R')	{																						//	the	browser	sends	an	R	when	the	rainbow	effect	is	enabled
								rainbow	=	true;
						}	else	if	(payload[0]	==	'N')	{																						//	the	browser	sends	an	N	when	the	rainbow	effect	is	disabled
								rainbow	=	false;
						}
						break;
		}
}

Again,	most	of	the	code	is	adapted	from	the	previous	examples,	only	the	WebSocket	part	is	new.

There	are	different	types	of	WebSocket	messages,	but	we're	only	interested	in	the	text	type,	because	the	JavaScript	code	at	the	client
side	sends	the	color	data	in	text	format,	as	a	hexadecimal	number,	starting	with	a	'#'	sign.
Each	color	is	a	10-bit	number,	so	in	total,	it	gives	us	a	30-bit	number	for	the	RGB	value.

When	the	rainbow	function	is	enabled,	JavaScript	sends	an	'R'	character,	and	when	it's	disabled,	it	sends	a	'N'	character.	

Let's	take	a	look	at	the	HTML	and	JavaScript	code	as	well:

HTML

<!DOCTYPE	html>
<html>
<head>
		<title>LED	Control</title>
		<link	href='https://fonts.googleapis.com/css?family=Roboto:300'	rel='stylesheet'	type='text/css'>
		<link	href='main.css'	rel='stylesheet'	type='text/css'>
		<link	rel="apple-touch-icon"	sizes="180x180"	href="/apple-touch-icon-180x180.png">
		<link	rel="icon"	type="image/png"	sizes="144x144"		href="/favicon-144x144.png">
		<link	rel="icon"	type="image/png"	sizes="48x48"	href="/favicon.ico">
		<link	rel="manifest"	href="/manifest.json">
		<meta	name="theme-color"	content="#00878f">
		<meta	content='width=device-width,	initial-scale=1.0,	maximum-scale=1.0,	user-scalable=0'	name='viewport'>
		<script	src="WebSocket.js"	type="text/javascript"></script>
</head>

<body>
		<center>
				<header>
						<h1>LED	Control</h1>
				</header>
				<div>
						<table>
								<tr>
										<td	style="width:14.4px;	text-align:	right">R:	</td>
										<td><input	class="enabled"	id="r"	type="range"	min="0"	max="1023"	step="1"	oninput="sendRGB();"	value="0"></td>
								</tr>
								<tr>
										<td	style="width:14.4px;	text-align:	right">G:	</td>
										<td><input	class="enabled"	id="g"	type="range"	min="0"	max="1023"	step="1"	oninput="sendRGB();"	value="0"></td>
								</tr>
								<tr>
										<td	style="width:14.4px;	text-align:	right">B:	</td>
										<td><input	class="enabled"	id="b"	type="range"	min="0"	max="1023"	step="1"	oninput="sendRGB();"	value="0"></td>
								</tr>
						</table>
						<p	style="margin:8px	0px">
								<button	id="rainbow"	class="button"	style="background-color:#999"	onclick="rainbowEffect();">Rainbow</button>
						</p>
				</div>
		</center>
</body>
</html>

There's	really	not	much	to	it,	just	3	sliders	and	a	button	linked	to	JavaScript	functions.

JavaScript

var	rainbowEnable	=	false;
var	connection	=	new	WebSocket('ws://'	+	location.hostname	+	':81/',	['arduino']);
connection.onopen	=	function	()	{
		connection.send('Connect	'	+	new	Date());
};
connection.onerror	=	function	(error)	{
		console.log('WebSocket	Error	',	error);
};
connection.onmessage	=	function	(e)	{
		console.log('Server:	',	e.data);
};
connection.onclose	=	function	()	{
		console.log('WebSocket	connection	closed');
};

function	sendRGB	()	{
		var	r	=	document.getElementById('r').value**	2	/	1023;
		var	g	=	document.getElementById('g').value**	2	/	1023;
		var	b	=	document.getElementById('b').value**	2	/	1023;

		var	rgb	=	r	<<	20	|	g	<<	10	|	b;
		var	rgbstr	=	'#'	+	rgb.toString(16);
		console.log('RGB:	'	+	rgbstr);
		connection.send(rgbstr);
}

function	rainbowEffect	()	{
		rainbowEnable	=	!	rainbowEnable;
		if	(rainbowEnable)	{

				connection.send("R");
				document.getElementById('rainbow').style.backgroundColor	=	'#00878F';
				document.getElementById('r').className	=	'disabled';
				document.getElementById('g').className	=	'disabled';
				document.getElementById('b').className	=	'disabled';
				document.getElementById('r').disabled	=	true;
				document.getElementById('g').disabled	=	true;
				document.getElementById('b').disabled	=	true;
		}	else	{
				connection.send("N");
				document.getElementById('rainbow').style.backgroundColor	=	'#999';
				document.getElementById('r').className	=	'enabled';
				document.getElementById('g').className	=	'enabled';
				document.getElementById('b').className	=	'enabled';
				document.getElementById('r').disabled	=	false;
				document.getElementById('g').disabled	=	false;
				document.getElementById('b').disabled	=	false;
				sendRGB();
		}
}

We	just	create	a	WebSocket	connection	object	to	send	data	to	the	ESP.	
Then	every	time	a	slider	is	moved,	we	take	the	values	of	the	three	sliders	and	we	square	the	color	values	to	get	a	smoother	and	more
natural	curve.	We	then	combine	them	into	a	30-bit	number	(10	bits	per	color).	Finally,	the	RGB	value	gets	converted	to	a	hexadecimal
string,	a	'#'	is	added,	and	it's	sent	to	the	ESP.
When	the	rainbow	button	is	pressed,	the	sliders	are	disabled,	and	an	'R'	is	sent	to	the	ESP.	When	the	rainbow	button	is	pressed	again,
the	sliders	are	enabled,	and	an	'N'	is	sent.

Helper	functions

Back	to	the	ESP8266	Arduino	code	again.	We	need	some	other	functions	as	well,	to	convert	bytes	to	KB	and	MB,	to	determine	file
types	based	on	file	extensions	and	to	convert	a	hue	angle	to	RGB	values.

String	formatBytes(size_t	bytes)	{	//	convert	sizes	in	bytes	to	KB	and	MB
		if	(bytes	<	1024)	{
				return	String(bytes)	+	"B";
		}	else	if	(bytes	<	(1024	*	1024))	{
				return	String(bytes	/	1024.0)	+	"KB";
		}	else	if	(bytes	<	(1024	*	1024	*	1024))	{
				return	String(bytes	/	1024.0	/	1024.0)	+	"MB";
		}
}

String	getContentType(String	filename)	{	//	determine	the	filetype	of	a	given	filename,	based	on	the	extension
		if	(filename.endsWith(".html"))	return	"text/html";
		else	if	(filename.endsWith(".css"))	return	"text/css";
		else	if	(filename.endsWith(".js"))	return	"application/javascript";
		else	if	(filename.endsWith(".ico"))	return	"image/x-icon";
		else	if	(filename.endsWith(".gz"))	return	"application/x-gzip";
		return	"text/plain";
}

void	setHue(int	hue)	{	//	Set	the	RGB	LED	to	a	given	hue	(color)	(0°	=	Red,	120°	=	Green,	240°	=	Blue)
		hue	%=	360;																			//	hue	is	an	angle	between	0	and	359°
		float	radH	=	hue*3.142/180;			//	Convert	degrees	to	radians
		float	rf,	gf,	bf;
		
		if(hue>=0	&&	hue<120){								//	Convert	from	HSI	color	space	to	RGB														
				rf	=	cos(radH*3/4);
				gf	=	sin(radH*3/4);
				bf	=	0;
		}	else	if(hue>=120	&&	hue<240){
				radH	-=	2.09439;
				gf	=	cos(radH*3/4);
				bf	=	sin(radH*3/4);
				rf	=	0;
		}	else	if(hue>=240	&&	hue<360){
				radH	-=	4.188787;
				bf	=	cos(radH*3/4);
				rf	=	sin(radH*3/4);
				gf	=	0;
		}
		int	r	=	rf*rf*1023;
		int	g	=	gf*gf*1023;
		int	b	=	bf*bf*1023;
		
		analogWrite(LED_RED,			r);				//	Write	the	right	color	to	the	LED	output	pins
		analogWrite(LED_GREEN,	g);
		analogWrite(LED_BLUE,		b);
}

To	convert	from	hue	to	RGB,	we	use	sines	and	cosines,	because	the	sum	of	their	squares	is	always	one,	so	the	total	intensity	will
always	be	more	or	less	the	same.

This	results	in	the	following	RGB	curves:

Using	the	example
Download	the	example	from	GitHub	and	open	it	in	the	Arduino	IDE.	Then	add	your	Wi-Fi	credentials	(lines	83-85).
Connect	an	RGB	LED	with	red	to	pin	15,	green	to	pin	12	and	blue	to	pin	13.	Don't	forget	the	current	limiting	resistors!
Select	the	SPIFFS	size	(64KB	should	be	enough,	but	if	you	want	to	upload	more	files	later,	you	should	set	it	higher).	Upload	the	sketch
over	Serial,	and	then	upload	the	SPIFFS	files	using	Tools	>	ESP8266	Sketch	Data	Upload.

Wait	for	it	to	connect	to	a	Wi-Fi	network,	or	connect	to	the	ESP8266	Access	Point	using	the	password	'thereisnospoon',	and	go
to	http://esp8266.local.	You	should	get	a	page	that	looks	like	this:

Use	the	sliders	to	adjust	the	color	levels	of	the	LED,	and	press	the	Rainbow	button	to	enable	the	rainbow	effect.

If	you	go	to	http://esp8266.local/edit.html,	you	can	upload	or	update	files:

Network	Time	Protocol
There	are	many	applications	where	you	want	to	know	the	time.	In	a	normal	Arduino	project,	you	would	have	to	get	a	RTC	module,	set
the	right	time,	sacrifice	some	Arduino	pins	for	communication	...	And	when	the	RTC	battery	runs	out,	you	have	to	replace	it.

On	the	ESP8266,	all	you	need	is	an	Internet	connection:	you	can	just	ask	a	time	server	what	time	it	is.	To	do	this,	the	Network	Time
Protocol	(NTP)	is	used.

In	the	previous	examples	(HTTP,	WebSockets)	we've	only	used	TCP	connections,	but	NTP	is	based	on	UDP.	There	are	a	couple	of
differences,	but	it's	really	easy	to	use,	thanks	to	the	great	libraries	that	come	with	the	ESP8266	Arduino	Core.

The	main	difference	between	TCP	and	UDP	is	that	TCP	needs	a	connection	to	send	messages:	First	a	handshake	is	sent	by	the	client,
the	server	responds,	and	a	connection	is	established,	and	the	client	can	send	its	messages.	After	the	client	has	received	the	response
of	the	server,	the	connection	is	closed	(except	when	using	WebSockets).	To	send	a	new	message,	the	client	has	to	open	a	new
connection	to	the	server	first.	This	introduces	latency	and	overhead.

UDP	doesn't	use	a	connection,	a	client	can	just	send	a	message	to	the	server	directly,	and	the	server	can	just	send	a	response
message	back	to	the	client	when	it	has	finished	processing.	There	is,	however,	no	guarantee	that	the	messages	will	arrive	at	their
destination,	and	there's	no	way	to	know	whether	they	arrived	or	not	(without	sending	an	acknowledgement,	of	course).	This	means
that	we	can't	halt	the	program	to	wait	for	a	response,	because	the	request	or	response	packet	could	have	been	lost	on	the	Internet,
and	the	ESP8266	will	enter	an	infinite	loop.

Instead	of	waiting	for	a	response,	we	just	send	multiple	requests,	with	a	fixed	interval	between	two	requests,	and	just	regularly	check
if	a	response	has	been	received.	

Getting	the	time
Let's	take	a	look	at	an	example	that	uses	UDP	to	request	the	time	from	a	NTP	server.

Libraries,	constants	and	globals

#include	<ESP8266WiFi.h>
#include	<ESP8266WiFiMulti.h>
#include	<WiFiUdp.h>

ESP8266WiFiMulti	wifiMulti;						//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

WiFiUDP	UDP;																					//	Create	an	instance	of	the	WiFiUDP	class	to	send	and	receive

IPAddress	timeServerIP;										//	time.nist.gov	NTP	server	address
const	char*	NTPServerName	=	"time.nist.gov";

const	int	NTP_PACKET_SIZE	=	48;		//	NTP	time	stamp	is	in	the	first	48	bytes	of	the	message

byte	NTPBuffer[NTP_PACKET_SIZE];	//	buffer	to	hold	incoming	and	outgoing	packets

To	use	UDP,	we	have	to	include	the	WiFiUdp	library,	and	create	a	UDP	object.	We'll	also	need	to	allocate	memory	for	a	buffer	to	store
the	UDP	packets.	For	NTP,	we	need	a	buffer	of	48	bytes	long.
To	know	where	to	send	the	UDP	packets	to,	we	need	the	hostname	of	the	NTP	server,	this	is	time.nist.gov.

Setup

void	setup()	{
		Serial.begin(115200);										//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println("\r\n");

		startWiFi();																			//	Try	to	connect	to	some	given	access	points.	Then	wait	for	a	connection

		startUDP();

		if(!WiFi.hostByName(NTPServerName,	timeServerIP))	{	//	Get	the	IP	address	of	the	NTP	server
				Serial.println("DNS	lookup	failed.	Rebooting.");
				Serial.flush();
				ESP.reset();
		}
		Serial.print("Time	server	IP:\t");
		Serial.println(timeServerIP);
		
		Serial.println("\r\nSending	NTP	request	...");
		sendNTPpacket(timeServerIP);		
}

In	the	setup,	we	just	start	our	Serial	and	Wi-Fi,	as	usual,	and	we	start	UDP	as	well.	We'll	look	at	the	implementation	of	this	function
later.
We	need	the	IP	address	of	the	NTP	server,	so	we	perform	a	DNS	lookup	with	the	server's	hostname.	There's	not	much	we	can	do
without	the	IP	address	of	the	time	server,	so	if	the	lookup	fails,	reboot	the	ESP.	
If	we	do	get	an	IP,	send	the	first	NTP	request,	and	enter	the	loop.

Loop

unsigned	long	intervalNTP	=	60000;	//	Request	NTP	time	every	minute
unsigned	long	prevNTP	=	0;
unsigned	long	lastNTPResponse	=	millis();
uint32_t	timeUNIX	=	0;

unsigned	long	prevActualTime	=	0;

void	loop()	{
		unsigned	long	currentMillis	=	millis();

		if	(currentMillis	-	prevNTP	>	intervalNTP)	{	//	If	a	minute	has	passed	since	last	NTP	request

				prevNTP	=	currentMillis;
				Serial.println("\r\nSending	NTP	request	...");
				sendNTPpacket(timeServerIP);															//	Send	an	NTP	request
		}

		uint32_t	time	=	getTime();																			//	Check	if	an	NTP	response	has	arrived	and	get	the	(UNIX)	time
		if	(time)	{																																		//	If	a	new	timestamp	has	been	received
				timeUNIX	=	time;
				Serial.print("NTP	response:\t");
				Serial.println(timeUNIX);
				lastNTPResponse	=	currentMillis;
		}	else	if	((currentMillis	-	lastNTPResponse)	>	3600000)	{
				Serial.println("More	than	1	hour	since	last	NTP	response.	Rebooting.");
				Serial.flush();
				ESP.reset();
		}

		uint32_t	actualTime	=	timeUNIX	+	(currentMillis	-	lastNTPResponse)/1000;
		if	(actualTime	!=	prevActualTime	&&	timeUNIX	!=	0)	{	//	If	a	second	has	passed	since	last	print
				prevActualTime	=	actualTime;
				Serial.printf("\rUTC	time:\t%d:%d:%d			",	getHours(actualTime),	getMinutes(actualTime),	getSeconds(actualTime));
		}		
}

The	first	part	of	the	loop	sends	a	new	NTP	request	to	the	time	server	every	minute.	This	is	based	on	Blink	Without	Delay.	
Then	we	call	the	getTime	function	to	check	if	we've	got	a	new	response	from	the	server.	If	this	is	the	case,	we	update	the	timeUNIX
variable	with	the	new	timestamp	from	the	server.
If	we	don't	get	any	responses	for	an	hour,	then	there's	something	wrong,	so	we	reboot	the	ESP.
The	last	part	prints	the	actual	time.	The	actual	time	is	just	the	last	NTP	time	plus	the	time	since	we	received	that	NTP	message.	

Setup	functions

Nothing	special	here,	just	a	function	to	connect	to	Wi-Fi,	and	a	new	function	to	start	listening	for	UDP	messages	on	port	123.

void	startWiFi()	{	//	Try	to	connect	to	some	given	access	points.	Then	wait	for	a	connection
		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting");
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{		//	Wait	for	the	Wi-Fi	to	connect
				delay(250);
				Serial.print('.');
		}
		Serial.println("\r\n");
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());													//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.print(WiFi.localIP());												//	Send	the	IP	address	of	the	ESP8266	to	the	computer
		Serial.println("\r\n");
}

void	startUDP()	{
		Serial.println("Starting	UDP");
		UDP.begin(123);																										//	Start	listening	for	UDP	messages	on	port	123
		Serial.print("Local	port:\t");
		Serial.println(UDP.localPort());
		Serial.println();
}

Helper	functions

uint32_t	getTime()	{
		if	(UDP.parsePacket()	==	0)	{	//	If	there's	no	response	(yet)
				return	0;
		}
		UDP.read(NTPBuffer,	NTP_PACKET_SIZE);	//	read	the	packet	into	the	buffer
		//	Combine	the	4	timestamp	bytes	into	one	32-bit	number
		uint32_t	NTPTime	=	(NTPBuffer[40]	<<	24)	|	(NTPBuffer[41]	<<	16)	|	(NTPBuffer[42]	<<	8)	|	NTPBuffer[43];
		//	Convert	NTP	time	to	a	UNIX	timestamp:
		//	Unix	time	starts	on	Jan	1	1970.	That's	2208988800	seconds	in	NTP	time:
		const	uint32_t	seventyYears	=	2208988800UL;
		//	subtract	seventy	years:
		uint32_t	UNIXTime	=	NTPTime	-	seventyYears;
		return	UNIXTime;
}

void	sendNTPpacket(IPAddress&	address)	{
		memset(NTPBuffer,	0,	NTP_PACKET_SIZE);		//	set	all	bytes	in	the	buffer	to	0
		//	Initialize	values	needed	to	form	NTP	request
		NTPBuffer[0]	=	0b11100011;			//	LI,	Version,	Mode
		//	send	a	packet	requesting	a	timestamp:
		UDP.beginPacket(address,	123);	//	NTP	requests	are	to	port	123
		UDP.write(NTPBuffer,	NTP_PACKET_SIZE);
		UDP.endPacket();
}

inline	int	getSeconds(uint32_t	UNIXTime)	{
		return	UNIXTime	%	60;
}

inline	int	getMinutes(uint32_t	UNIXTime)	{
		return	UNIXTime	/	60	%	60;
}

inline	int	getHours(uint32_t	UNIXTime)	{
		return	UNIXTime	/	3600	%	24;
}

In	the	getTime	function,	we	first	try	to	parse	the	UDP	packet.	If	there's	no	packet	available,	the	function	just	returns	0.	If	there	is	a	UDP
packet	available	however,	read	it	into	the	buffer.	The	NTP	timestamp	is	32	bits	or	4	bytes	wide,	so	we	combine	these	bytes	into	one
long	number.	This	number	is	the	number	of	seconds	since	Jan	1,	1900,	00:00:00,	but	most	applications	use	UNIX	time,	the	number	of
seconds	since	Jan	1,	1970,	00:00:00	(UNIX	epoch).	To	convert	from	NTP	time	to	UNIX	time,	we	just	subtract	70	years	worth	of	seconds.

To	request	the	time	from	the	NTP	server,	you	have	to	send	a	certain	sequence	of	48	bytes.	We	don't	need	any	fancy	features,	so	just
set	the	first	byte	to	request	the	time,	and	leave	all	other	47	bytes	zero.
To	actually	send	the	packet,	you	have	to	start	the	packet,	specifying	the	IP	address	of	the	server,	and	the	NTP	port	number,	port	123.
Then	just	write	the	buffer	to	the	packet,	and	send	it	with	endPacket.

The	last	three	functions	are	just	some	simple	math	to	convert	seconds	to	hours,	minutes	and	seconds.

Using	the	example

Enter	your	Wi-Fi	credentials	on	lines	79-81,	and	hit	upload.	If	you	have	a	working	Internet	connection,	you	should	get	an	output	that
looks	like	this:

Connecting
.........

Connected	to	Wi-Fi	SSID
IP	address:	 192.168.1.2

Starting	UDP
Local	port:	 123

Time	server	IP:	216.229.0.179

Sending	NTP	request	...
NTP	response:	 1488378061
UTC	time:	 14:21:53			
Sending	NTP	request	...
NTP	response:	 1488378114
UTC	time:	 14:22:53			
Sending	NTP	request	...
NTP	response:	 1488378174
UTC	time:	 14:23:53			
Sending	NTP	request	...
NTP	response:	 1488378234
UTC	time:	 14:24:53			
Sending	NTP	request	...
NTP	response:	 1488378294
UTC	time:	 14:25:53
...

You	should	see	the	time	update	every	second,	and	Sending	NTP	request	...		should	show	up	every	minute.
If	you	don't	have	an	Internet	connection,	the	DNS	lookup	of	the	time	server	will	fail:

Connecting
.........

Connected	to	Wi-Fi	SSID
IP	address:	 192.168.1.2

Starting	UDP
Local	port:	 123

DNS	lookup	failed.	Rebooting.

	ets	Jan		8	2013,rst	cause:2,	boot	mode:(3,6)

If	your	connection	is	not	reliable,	or	if	there's	heavy	traffic,	you	might	encounter	some	dropped	packets:

Sending	NTP	request	...
NTP	response:	 1488378780
UTC	time:	 14:33:54			
Sending	NTP	request	...
UTC	time:	 14:34:54			
Sending	NTP	request	...
NTP	response:	 1488378895
UTC	time:	 14:35:0

As	you	can	see,	the	ESP	never	received	a	response	to	the	second	NTP	request.	That's	not	really	an	issue,	as	long	as	at	least	some
packets	make	it	through.

Local	time	and	daylight	savings

An	NTP	server	returns	the	UTC	time.	If	you	want	local	time,	you	have	to	compensate	for	your	time	zone	and	daylight	savings.	For
example,	if	you	want	CET	(Central	European	Time),	you	have	to	add	3600	to	the	UNIX	time	during	winter,	(3600	s	=	1	h),	and	7200
during	summer	(DST).

Data	logging
A	common	use	for	IoT	devices	like	the	ESP8266	is	monitoring	sensors.	Using	the	code	in	the	previous	example,	we	can	request	the
time,	and	save	some	sensor	values	to	a	file.	If	we	run	a	server	as	well,	we	can	show	this	data	in	a	pretty	graph	in	a	webpage.

Temperature	logger
In	the	following	example,	we'll	use	a	DS18S20	temperature	sensor	to	log	the	temperature	over	time	and	save	it	to	the	SPIFFS.	It	can
then	be	displayed	in	a	graph	in	the	browser.

Installing	libraries

First,	download	the	Dallas	Temperature	library	by	Miles	Burton	and	the	OneWire	library	by	Jim	Studt:	Go	to	Sketch	>	Include	Library	...
>	Manage	Libraries	and	search	for	'Dallas	Temperature'	and	'OneWire'	(make	sure	you	download	the	correct	version).

Hardware

Connect	the	ground	of	the	DS18S20	temperature	sensor	(pin	1)	to	the	ground	of	the	ESP,	connect	the	data	pin	(pin	2)	to	GPIO5,	and
VCC	(pin	3)	to	the	3.3V	of	the	ESP.	Finally,	connect	a	4k7Ω	resistor	between	the	data	pin	and	VCC.

Libraries,	constants	and	globals

#include	<OneWire.h>
#include	<DallasTemperature.h>
#include	<ESP8266WiFi.h>
#include	<ESP8266WiFiMulti.h>
#include	<WiFiUdp.h>
#include	<ArduinoOTA.h>
#include	<ESP8266WebServer.h>
#include	<ESP8266mDNS.h>
#include	<FS.h>

#define	ONE_HOUR	3600000UL

#define	TEMP_SENSOR_PIN	5

OneWire	oneWire(TEMP_SENSOR_PIN);								//	Set	up	a	OneWire	instance	to	communicate	with	OneWire	devices

DallasTemperature	tempSensors(&oneWire);	//	Create	an	instance	of	the	temperature	sensor	class

ESP8266WebServer	server	=	ESP8266WebServer(80);							//	create	a	web	server	on	port	80

File	fsUploadFile;																																				//	a	File	variable	to	temporarily	store	the	received	file

ESP8266WiFiMulti	wifiMulti;				//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

const	char	*OTAName	=	"ESP8266";									//	A	name	and	a	password	for	the	OTA	service
const	char	*OTAPassword	=	"esp8266";

const	char*	mdnsName	=	"esp8266";								//	Domain	name	for	the	mDNS	responder

WiFiUDP	UDP;																			//	Create	an	instance	of	the	WiFiUDP	class	to	send	and	receive	UDP	messages

IPAddress	timeServerIP;								//	The	time.nist.gov	NTP	server's	IP	address
const	char*	ntpServerName	=	"time.nist.gov";

const	int	NTP_PACKET_SIZE	=	48;										//	NTP	time	stamp	is	in	the	first	48	bytes	of	the	message

byte	packetBuffer[NTP_PACKET_SIZE];					//	A	buffer	to	hold	incoming	and	outgoing	packets

The	only	new	things	here	are	the	OneWire	and	DallasTemperature	libraries,	to	get	the	temperature	from	the	sensor.

Setup

void	setup()	{
		Serial.begin(115200);								//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println("\r\n");

		tempSensors.setWaitForConversion(false);	//	Don't	block	the	program	while	the	temperature	sensor	is	reading
		tempSensors.begin();																					//	Start	the	temperature	sensor

		if	(tempSensors.getDeviceCount()	==	0)	{
				Serial.printf("No	DS18x20	temperature	sensor	found	on	pin	%d.	Rebooting.\r\n",	TEMP_SENSOR_PIN);
				Serial.flush();
				ESP.reset();
		}

		startWiFi();																	//	Start	a	Wi-Fi	access	point,	and	try	to	connect	to	some	given	access	points.	Then	wait	for	either	an	
AP	or	STA	connection

		startOTA();																		//	Start	the	OTA	service

		startSPIFFS();															//	Start	the	SPIFFS	and	list	all	contents

		startMDNS();																	//	Start	the	mDNS	responder

		startServer();															//	Start	a	HTTP	server	with	a	file	read	handler	and	an	upload	handler

		startUDP();																		//	Start	listening	for	UDP	messages	to	port	123

		WiFi.hostByName(ntpServerName,	timeServerIP);	//	Get	the	IP	address	of	the	NTP	server
		Serial.print("Time	server	IP:\t");
		Serial.println(timeServerIP);

		sendNTPpacket(timeServerIP);
}

In	the	setup,	there's	not	much	new	either,	we	just	start	the	temperature	sensor,	and	check	if	we	can	communicate	with	it.	If	no
temperature	sensor	is	found,	the	ESP	resets.	

Getting	the	temperature	from	the	sensor	may	take	some	time	(up	to	750ms).	We	don't	want	our	loop	to	take	longer	than	a	couple	of
milliseconds,	so	we	can't	wait	750ms.	If	we	did,	the	HTTP	server	etc.	would	start	to	misbehave.	
The	solution	is	to	request	the	temperature	first.	The	sensor	will	then	start	reading	the	analog	temperature,	and	stores	it	in	its	memory.
In	the	meantime,	the	loop	just	keeps	on	running,	the	server	refreshes	etc.	After	750ms,	we	contact	the	sensor	again,	and	read	the
temperature	from	its	memory.
To	tell	the	library	that	we	don't	want	to	wait	for	the	analog	to	digital	conversion	of	the	sensor,	we	use	setWaitForConversion.

Loop

const	unsigned	long	intervalNTP	=	ONE_HOUR;	//	Update	the	time	every	hour
unsigned	long	prevNTP	=	0;
unsigned	long	lastNTPResponse	=	millis();

const	unsigned	long	intervalTemp	=	60000;			//	Do	a	temperature	measurement	every	minute
unsigned	long	prevTemp	=	0;
bool	tmpRequested	=	false;
const	unsigned	long	DS_delay	=	750;									//	Reading	the	temperature	from	the	DS18x20	can	take	up	to	750ms

uint32_t	timeUNIX	=	0;																						//	The	most	recent	timestamp	received	from	the	time	server

void	loop()	{
		unsigned	long	currentMillis	=	millis();

		if	(currentMillis	-	prevNTP	>	intervalNTP)	{	//	Request	the	time	from	the	time	server	every	hour
				prevNTP	=	currentMillis;
				sendNTPpacket(timeServerIP);
		}

		uint32_t	time	=	getTime();																			//	Check	if	the	time	server	has	responded,	if	so,	get	the	UNIX	time
		if	(time)	{
				timeUNIX	=	time;
				Serial.print("NTP	response:\t");
				Serial.println(timeUNIX);
				lastNTPResponse	=	millis();
		}	else	if	((millis()	-	lastNTPResponse)	>	24UL	*	ONE_HOUR)	{
				Serial.println("More	than	24	hours	since	last	NTP	response.	Rebooting.");
				Serial.flush();
				ESP.reset();
		}

		if	(timeUNIX	!=	0)	{
				if	(currentMillis	-	prevTemp	>	intervalTemp)	{		//	Every	minute,	request	the	temperature
						tempSensors.requestTemperatures();	//	Request	the	temperature	from	the	sensor	(it	takes	some	time	to	read	it)
						tmpRequested	=	true;
						prevTemp	=	currentMillis;
						Serial.println("Temperature	requested");
				}
				if	(currentMillis	-	prevTemp	>	DS_delay	&&	tmpRequested)	{	//	750	ms	after	requesting	the	temperature
						uint32_t	actualTime	=	timeUNIX	+	(currentMillis	-	lastNTPResponse)	/	1000;
						//	The	actual	time	is	the	last	NTP	time	plus	the	time	that	has	elapsed	since	the	last	NTP	response
						tmpRequested	=	false;
						float	temp	=	tempSensors.getTempCByIndex(0);	//	Get	the	temperature	from	the	sensor
						temp	=	round(temp	*	100.0)	/	100.0;	//	round	temperature	to	2	digits

						Serial.printf("Appending	temperature	to	file:	%lu,",	actualTime);
						Serial.println(temp);
						File	tempLog	=	SPIFFS.open("/temp.csv",	"a");	//	Write	the	time	and	the	temperature	to	the	csv	file
						tempLog.print(actualTime);
						tempLog.print(',');
						tempLog.println(temp);
						tempLog.close();
				}
		}	else	{																																				//	If	we	didn't	receive	an	NTP	response	yet,	send	another	request
				sendNTPpacket(timeServerIP);
				delay(500);
		}

		server.handleClient();																						//	run	the	server
		ArduinoOTA.handle();																								//	listen	for	OTA	events
}

The	loop	looks	a	lot	more	complex,	but	it's	actually	pretty	simple.	It's	all	based	on	Blink	Without	Delay.	
There's	two	things	going	on:

1.	 Every	hour,	the	ESP	requests	the	time	from	an	NTP	server.	Then	it	constantly	checks	for	a	response,	and	updates	the	time	if	it
gets	an	NTP	response.	If	it	hasn't	received	any	responses	for	over	24	hours,	there's	something	wrong,	and	the	ESP	resets	itself.

2.	 Every	minute,	the	ESP	requests	the	temperature	from	the	DS18x20	sensor,	and	sets	the	'tmpRequested'	flag.	The	sensor	will
start	the	analog	to	digital	conversion.
750ms	after	the	request,	when	the	conversion	should	be	finished,	the	ESP	reads	the	temperature	from	the	sensor,	and	resets	the
flag	(otherwise,	it	would	keep	on	reading	the	same	temperature	over	and	over	again).	Then	it	writes	the	time	and	the
temperature	to	a	file	in	SPIFFS.
By	saving	it	as	a	CSV	file	in	the	filesystem,	we	can	easily	download	it	to	the	client	(using	the	web	server	that	is	running),	and	it's
easy	to	parse	with	JavaScript.

If	we	miss	the	first	NTP	response,	timeUNIX	will	be	zero.	If	that's	the	case,	we	send	another	NTP	request	(otherwise,	the	next	request
would	be	an	hour	later,	and	the	temperature	logging	only	starts	when	the	time	is	known).

We	also	need	to	run	the	server	and	OTA	functions	to	handle	HTTP	and	OTA	requests.

Setup	functions,	server	handlers	and	helper	functions

These	functions	haven't	change	since	the	previous	example,	so	there's	no	need	to	cover	them	here.	You	do	need	them	to	get	the
program	running,	though.	Download	the	ZIP	archive	with	examples	for	the	full	sketch.

HTML	and	JavaScript

There's	some	HTML	and	JavaScript	files	to	plot	the	temperature	using	Google	Graphs.	I	won't	cover	it	here,	but	if	you	wan't	to	know

how	it	works,	you	can	find	the	files	in	the	ZIP	archive.

Using	the	example

Set	the	SPIFFS	size	to	64KB	or	larger	if	you	plan	to	use	it	for	prolonged	periods	of	time.	(You	could	also	increase	the	logging	interval	on
line	80	to	save	space.)
Enter	your	Wi-Fi	credentials	on	lines	138-140,	and	hit	upload.	Then	upload	the	webpages	and	scripts	to	SPIFFS	using	Tools	>	ESP8266
Sketch	Data	Upload.
Make	sure	you	have	the	temperature	sensor	connected,	as	described	at	the	top	of	this	page.	Open	a	terminal	to	see	if	it	works.	You
should	see	something	like	this:

Connecting
..........

Connected	to	SSID
IP	address:	 192.168.1.2

OTA	ready

SPIFFS	started.	Contents:
	 FS	File:	/favicon-144x144.png,	size:	2.81KB
	 FS	File:	/temperatureGraph.js.gz,	size:	1.17KB
	 FS	File:	/temp.csv,	size:	42.50KB
	 FS	File:	/success.html.gz,	size:	456B
	 FS	File:	/edit.html.gz,	size:	700B
	 FS	File:	/main.css.gz,	size:	349B
	 FS	File:	/index.html.gz,	size:	795B
	 FS	File:	/manifest.json,	size:	169B
	 FS	File:	/favicon.ico.gz,	size:	1.91KB

mDNS	responder	started:	http://esp8266.local
HTTP	server	started.
Starting	UDP
Local	port:	 123
Time	server	IP:	216.229.0.179
Sending	NTP	request
NTP	response:	 1488666586
Temperature	requested
Appending	temperature	to	file:	1488666627,20.00
Temperature	requested
Appending	temperature	to	file:	1488666687,19.94
Temperature	requested
...

Let	it	run	for	a	couple	of	minutes,	to	gather	some	temperature	data.	Then	open	a	web	browser,	and	go	to	http://esp8266.local/.
You	should	get	a	graph	showing	the	temperature	curve.	You	can	use	the	arrow	buttons	to	travel	through	time,	and	the	+	and	-	buttons
to	zoom	in	or	out.	The	reset	button	resets	the	zoom,	and	jumps	back	to	the	present.	Refresh	requests	the	latest	temperature	data.

If	you	want,	you	can	still	go	to	http://esp8266.local/edit.html	to	upload	new	files.

The	web	interface	should	look	like	this:

It	works	on	Windows,	Linux	and	Android,	but	iOS	seems	to	have	some	problems	rendering	the	graph	(in	both	Chrome	and	Safari).

Email	notifier
Another	great	use	for	IoT	devices	is	displaying	things	like	traffic	information,	weather	forecast,	social	media	updates	...	This	requires
us	to	send	an	HTTP	GET	request	to	the	server	of	the	service	we'd	like	to	access.	Most	popular	services	have	API	(Application
Programming	Interface)	documents	that	explain	that	explain	how	you	can	retrieve	certain	information,	and	what	format	that
information	is	in.	In	the	following	example,	we'll	look	at	Gmail	specifically,	but	the	code	should	be	similar	for	other	services.

Showing	the	number	of	unread	emails
To	communicate	with	Google's	Gmail	servers,	we	have	to	establish	a	secure	connection	to	the	server	and	send	a	secure	HTTPS	request
with	our	email	address	and	password.	Gmail	will	then	respond	with	an	XML	document	containing	all	kinds	of	information,	like	(parts	of)
your	most	recent	messages	and	the	number	of	unread	emails.

To	make	sure	we	don't	send	our	Google	password	to	a	malicious	server,	we	have	to	check	the	server's	identity,	using	the	SHA-1
fingerprint	of	the	SSL	certificate.	This	is	a	unique	sequence	of	hexadecimal	characters	that	identifies	the	server.

Allowing	access	to	the	email	feed

The	only	way	(I	know	of)	to	get	email	information	from	Google	on	the	ESP	currently	is	the	Google	Atom	Feed.	This	is	an	older	method,
so	you	have	to	change	your	Gmail	settings	to	allow	access	to	the	feed.
Go	to	https://www.google.com/settings/security/lesssecureapps	to	enable	access	for	"less	secure	apps":

Until	there's	support	for	the	new	OAuth2	protocol	on	the	ESP,	we'll	have	to	use	the	old,	less	secure	method.

Hardware

Connect	an	LED	(+	resistor)	to	pin	13,	as	an	unread	email	indicator.

The	Code

#include	<WiFiClientSecure.h>			//	Include	the	HTTPS	library
#include	<ESP8266WiFi.h>								//	Include	the	Wi-Fi	library
#include	<ESP8266WiFiMulti.h>			//	Include	the	Wi-Fi-Multi	library

ESP8266WiFiMulti	wifiMulti;					//	Create	an	instance	of	the	ESP8266WiFiMulti	class,	called	'wifiMulti'

const	char*	host	=	"mail.google.com";	//	the	Gmail	server
const	char*	url	=	"/mail/feed/atom";		//	the	Gmail	feed	url
const	int	httpsPort	=	443;												//	the	port	to	connect	to	the	email	server

																																						//	The	SHA-1	fingerprint	of	the	SSL	certificate	for	the	Gmail	server	(see	below)
const	char*	fingerprint	=	"D3	90	FC	82	07	E6	0D	C2	CE	F9	9D	79	7F	EC	F6	E6	3E	CB	8B	B3";

																																						//	The	Base64	encoded	version	of	your	Gmail	login	credentials	(see	below)
const	char*	credentials	=	"ZW1haWwuYWRkcmVzc0BnbWFpbC5jb206cGFzc3dvcmQ=";

const	byte	led	=	13;

void	setup()	{
		Serial.begin(115200);									//	Start	the	Serial	communication	to	send	messages	to	the	computer
		delay(10);
		Serial.println('\n');

		pinMode(led,	OUTPUT);

		wifiMulti.addAP("ssid_from_AP_1",	"your_password_for_AP_1");			//	add	Wi-Fi	networks	you	want	to	connect	to
		wifiMulti.addAP("ssid_from_AP_2",	"your_password_for_AP_2");
		wifiMulti.addAP("ssid_from_AP_3",	"your_password_for_AP_3");

		Serial.println("Connecting	...");
		int	i	=	0;
		while	(wifiMulti.run()	!=	WL_CONNECTED)	{	//	Wait	for	the	Wi-Fi	to	connect:	scan	for	Wi-Fi	networks,	and	connect	to	the	strongest	of	
the	networks	above
				delay(250);
				Serial.print('.');
		}
		Serial.println('\n');
		Serial.print("Connected	to	");
		Serial.println(WiFi.SSID());														//	Tell	us	what	network	we're	connected	to
		Serial.print("IP	address:\t");
		Serial.println(WiFi.localIP());											//	Send	the	IP	address	of	the	ESP8266	to	the	computer
		Serial.println('\n');
}

void	loop()	{
		int	unread	=	getUnread();
		if	(unread	==	0)	{
				Serial.println("\r\nYou've	got	no	unread	emails");
				digitalWrite(led,	LOW);
		}	else	if	(unread	>	0)	{
				Serial.printf("\r\nYou've	got	%d	new	messages\r\n",	unread);
				digitalWrite(led,	HIGH);
		}	else	{
				Serial.println("Could	not	get	unread	mails");
		}
		Serial.println('\n');
		delay(5000);
}

int	getUnread()	{				//	a	function	to	get	the	number	of	unread	emails	in	your	Gmail	inbox
		WiFiClientSecure	client;	//	Use	WiFiClientSecure	class	to	create	TLS	(HTTPS)	connection
		Serial.printf("Connecting	to	%s:%d	...	\r\n",	host,	httpsPort);
		if	(!client.connect(host,	httpsPort))	{			//	Connect	to	the	Gmail	server,	on	port	443
				Serial.println("Connection	failed");				//	If	the	connection	fails,	stop	and	return
				return	-1;
		}

		if	(client.verify(fingerprint,	host))	{			//	Check	the	SHA-1	fingerprint	of	the	SSL	certificate
				Serial.println("Certificate	matches");

		}	else	{																																		//	if	it	doesn't	match,	it's	not	safe	to	continue
				Serial.println("Certificate	doesn't	match");
				return	-1;
		}

		Serial.print("Requesting	URL:	");
		Serial.println(url);

		client.print(String("GET	")	+	url	+	"	HTTP/1.1\r\n"	+	
															"Host:	"	+	host	+	"\r\n"	+
															"Authorization:	Basic	"	+	credentials	+	"\r\n"	+
															"User-Agent:	ESP8266\r\n"	+
															"Connection:	close\r\n\r\n");	//	Send	the	HTTP	request	headers

		Serial.println("Request	sent");

		int	unread	=	-1;

		while	(client.connected())	{																										//	Wait	for	the	response.	The	response	is	in	XML	format
				client.readStringUntil('<');																								//	read	until	the	first	XML	tag
				String	tagname	=	client.readStringUntil('>');							//	read	until	the	end	of	this	tag	to	get	the	tag	name
				if	(tagname	==	"fullcount")	{																							//	if	the	tag	is	<fullcount>,	the	next	string	will	be	the	number	of	unread	
emails
						String	unreadStr	=	client.readStringUntil('<');			//	read	until	the	closing	tag	(</fullcount>)
						unread	=	unreadStr.toInt();																							//	convert	from	String	to	int
						break;																																												//	stop	reading
				}																																																			//	if	the	tag	is	not	<fullcount>,	repeat	and	read	the	next	tag
		}
		Serial.println("Connection	closed");

		return	unread;																																								//	Return	the	number	of	unread	emails
}

How	it	works

The	setup	should	be	pretty	familiar	by	now.	
The	only	new	thing	is	the	getUnread()	function:
First,	it	starts	an	HTTPS	connection	to	the	Gmail	server	on	port	443.	Then	it	checks	if	the	fingerprint	of	the	certificate	matches,	so	it
knows	that	it's	the	real	Google	server,	and	not	some	hacker.	If	the	certificate	doesn't	match,	it's	not	safe	to	send	the	credentials	to	the
server.

If	it	matches,	we	send	a	HTTP	GET	request	to	the	server:

GET	/mail/feed/atom	HTTP/1.1\r\n
Host:	mail.google.com\r\n
Authorization:	Basic	aVeryLongStringOfBase64EncodedCharacters=\r\n
User-Agent:	ESP8266\r\n
Connection:	close\r\n\r\n

The	request	contains	the	URI	we	want	to	access	(in	this	case	this	is	the	Atom	feed	URL),	the	host	(which	is	mail.google.com),	and	the
base64-encoded	version	of	your	login	credentials.
As	you	can	see,	the	different	lines	of	the	header	are	separated	by	a	CRLF	(Carriage	Return	+	Line	Feed,	\r\n).	Two	CRLF's	mark	the	end
of	the	header.
The	Gmail	server	will	process	our	request,	and	send	the	feed	as	a	response	over	the	same	HTTPS	connection.	This	response	is	an	XML
document,	that	consists	of	tags	with	angled	brackets,	just	like	HTML.	If	you	need	a	lot	of	data,	it's	recommended	to	use	a	proper	XML
parser	library,	but	we	only	need	one	tag,	so	we	can	just	skim	through	the	response	text	until	we	find	the	<fullcount>x</fullcount>
tag.	The	number	inside	this	tag	is	the	number	of	unread	emails	in	the	inbox.
We	can	just	convert	it	to	an	integer,	and	stop	reading.

This	is	the	format	of	the	XML	feed,	you	can	see	the	fullcount	tag	on	line	5:

<?xml	version="1.0"	encoding="UTF-8"?>
<feed	xmlns="http://purl.org/atom/ns#"	version="0.3">
				<title>Gmail	-	Inbox	for	esp8266.test.mail@gmail.com</title>
				<tagline>New	messages	in	your	Gmail	Inbox</tagline>
				<fullcount>5</fullcount>
				<link	rel="alternate"	href="https://mail.google.com/mail"	type="text/html"	/>
				<modified>2017-03-05T15:54:06Z</modified>
				<entry>
								<title>New	sign-in	from	Firefox	on	Linux</title>
								<summary>New	sign-in	from	Firefox	on	Linux	Hi	ESP8266,	Your	Google	Account	esp8266.test.mail@gmail.com	was	just	used	to	sign	in	
from	Firefox	on	Linux.	ESP8266	Test	esp8266.test.mail@gmail.com	Linux	Sunday,</summary>
								<link	rel="alternate"	href="https://mail.google.com/mail?
account_id=esp8266.test.mail@gmail.com&message_id=123456789&view=conv&extsrc=atom"	type="text/html"	/>
								<modified>2017-03-05T15:52:45Z</modified>
								<issued>2017-03-05T15:52:45Z</issued>
								<id>tag:gmail.google.com,2004:123456789123456789</id>
								<author>
												<name>Google</name>
												<email>no-reply@accounts.google.com</email>
								</author>
				</entry>

				...

</feed>

The	loop	just	prints	the	number	of	unread	emails,	and	turns	on	an	LED	if	you	have	unread	messages.

Getting	the	fingerprint	of	the	Gmail	server

Like	I	mentioned	before,	we	need	a	fingerprint	to	check	the	identity	of	the	server.	To	get	this	fingerprint,	execute	the	following
command	in	a	terminal	(Linux	&	Mac):

openssl	s_client	-connect	mail.google.com:443	<	/dev/null	2>/dev/null	|	openssl	x509	-fingerprint	-noout	-in	/dev/stdin	|	sed	's/:/	/g'

Copy	the	hexadecimal	fingerprint	string	and	paste	it	into	the	sketch	on	line	12.	For	example:

const	char*	fingerprint	=	"D3	90	FC	82	07	E6	0D	C2	CE	F9	9D	79	7F	EC	F6	E6	3E	CB	8B	B3";

Encoding	your	login	credentials

To	get	access	to	the	feed,	you	have	to	enter	your	email	address	and	password.	You	can't	send	them	as	plain	text,	you	have	to	encode
them	to	base64	first.	Use	the	following	command	in	a	terminal	(Linux	&	Mac):

echo	-n	"email.address@gmail.com:password"	|	base64

Then	add	it	to	line	15	of	the	sketch.	For	example:

const	char*	credentials	=	"ZW1haWwuYWRkcmVzc0BnbWFpbC5jb206cGFzc3dvcmQ=";

Other	APIs

Many	services	send	their	data	in	JSON	format.	If	you	just	need	one	piece	of	information,	you	may	be	able	to	use	the	same	approach	of
scanning	the	entire	JSON	text	for	a	certain	word,	but	it's	much	easier	to	use	a	JSON	parser,	like	the	ArduinoJson	library.	It	will
deserialize	the	JSON	text,	and	create	a	JSON	object,	you	could	compare	it	to	an	associative	array.	You	can	browse	the	entire	tree
structure,	and	easily	find	the	data	you're	looking	for.
The	downside	is	that	it	uses	more	memory.

Advanced
DNS	Captive	Portal

When	using	the	ESP8266	in	access	point	mode,	you	probably	want	to	redirect	users	to	the	right	page.	You	can	do	this	by	creating	a
captive	portal,	using	DNS.	It's	basically	just	a	DNS	server	that	will	convert	all	host	names	to	the	ESP's	own	IP	address.	
This	technique	is	also	used	by	open	Wi-Fi	networks	that	redirect	you	to	a	login	page	before	you	can	start	browsing	the	internet.

Wi-Fi	configuration

If	you	want	to	be	able	to	change	the	Wi-Fi	connection	settings	without	re-uploading	the	code,	you	could	take	a	look	at	the	WiFiManager
library	by	tzapu.	This	will	try	to	connect	to	known	networks,	but	if	it	fails,	it	will	start	a	Wi-Fi	access	point.	You	can	then	connect	to	this
access	point,	open	the	browser,	and	pick	a	network	to	connect	to.	The	new	configuration	is	saved.
The	WiFiManager	library	uses	a	captive	portal	to	present	you	with	the	right	Wi-Fi	settings	page.
You	could	also	implement	a	Wi-Fi	manager	yourself,	or	you	can	just	check	out	the	example	that	comes	with	the	ESP8266	Arduino	Core
(Examples	>	DNSServer	>	CaptivePortalAdvanced).

I²S
The	ESP8266	has	an	I²S	bus	on	the	RXD	pin.	It	can	run	at	80MHz,	and	has	DMA	(direct	memory	access),	so	it's	really	fast.	Its	main
purpose	is	to	connect	an	I²S	DAC	(Digital	to	Analog	Converter)	to	have	an	audio	output,	but	you	can	use	it	for	other	things	as	well.	
For	example,	CNLohr	managed	to	transmit	analog	television,	by	connecting	an	antenna	wire	to	the	I²S	pin.	You	can	also	use	it	to
control	WS2812Bs	LEDs.	You	can	even	use	it	to	communicate	over	Ethernet	(not	really	useful,	and	definitely	not	recommended,	but	it
works).
Another	great	use	for	the	I²S	bus	is	outputting	data	to	shift	registers.	This	gives	you	extra	outputs	that	are	reasonably	fast,	for	things
like	LEDs	or	stepper	motors.

Other	examples

You	can	find	lots	of	other	examples	in	the	Arduino	IDE,	I'd	recommend	to	check	those	out	as	well.

YouTube
There's	some	great	channels	on	YouTube	that	do	amazing	things	with	the	ESP8266.	Here's	a	short	list	of	the	ones	I'm	currently
following.	If	you've	got	more	recommendation,	just	leave	a	comment!

Andreas	Spiess
CNLohr
Acrobotic
Miika	Kurkela

In	conclusion	...
Congratulations,	you've	reached	the	end	of	this	rather	long	article	on	the	basics	of	the	ESP8266.	I	hope	this	was	interesting	to	you,
and	that	you'll	use	this	knowledge	for	your	own	DIY	projects.

If	you	have	any	remarks	or	if	you	want	to	help	improve	this	guide,	don't	hesitate	to	leave	a	comment	or	to	send	me	a	message.

Thank	you	for	reading!
Pieter,	8-3-2017

